K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

13 tháng 11 2015

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

=> \(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{98.99}-\frac{1}{99.100}\)

               \(=\frac{1}{2}-\vec{\frac{1}{99.100}=\frac{4949}{99.100}}\)

\(C=\frac{4949}{2.99.100}\)

30 tháng 9 2018

Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )

         S = (50+1) x 50 : 2 = 1275

13 tháng 9 2020

giúp vớiiiiiiiiiiiiiiiiiiiiiiiii

17 tháng 9 2020

123456789BFGBJTYT

1 tháng 3 2016

nhìn đề nó sao sao ấy

10 tháng 4 2017

a, \(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{999}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{1000}{999}\)

\(=\dfrac{3.4.5...1000}{2.3.4...999}\)

\(=\dfrac{1000}{2}\)\(=500\)

10 tháng 4 2017

b, \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{1000}-1\right)\)

\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-999}{1000}\)

\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-999\right)}{2.3.4...1000}\)

\(=\dfrac{-1}{1000}\)