Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{-2}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{-2}{21}\div\frac{1}{42}\)
\(\Rightarrow\frac{x}{3}=-4\)
\(\Rightarrow\frac{x}{3}=\frac{-12}{3}\)
\(\Rightarrow x=-12\)
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)
\(\frac{5}{1.6}\)+ \(\frac{5}{6.11}\)+ .........+\(\frac{5}{501.506}\)
=\(\frac{1}{1.6}+\frac{1}{6.11}+.....+\frac{1}{501.506}\)
=\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+......+\frac{1}{501}-\frac{1}{506}\)
=\(\frac{1}{1}-\frac{1}{506}\)
= tự tính nha
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
a, (x+2)+(x+4)+(x+6)+...+(x+100)=6000
(x+x+x+...+x)+(2+4+6+...+100)=6000
50.x+2550=6000
50.x=6000-2550
50.x=3450
x=3450:50
x=69
b, 1+2+3+4+...+x=15
10+...+x=15
x=15-10
x=5
Nho **** cho minh nha
Ta có: (x+x+x+...+x) + (2+4+6+...+100) = 6000
Ta thấy vế phải có: (100-2):2+1=50(số hạng)
Tổng của vế phải: [(2+100)*50]:2=2550
\(\Rightarrow\)có 50 số x
\(\Rightarrow\)50*x + 2550 = 6000
\(\Rightarrow\)50*x=6000-2550
\(\Rightarrow\)50*x=3450
\(\Rightarrow\)x=3450:50
\(\Rightarrow\)x=69
Vậy x=69
Mình đúng nè, nhớ k nha