Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1.6}\)+ \(\frac{5}{6.11}\)+ .........+\(\frac{5}{501.506}\)
=\(\frac{1}{1.6}+\frac{1}{6.11}+.....+\frac{1}{501.506}\)
=\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+......+\frac{1}{501}-\frac{1}{506}\)
=\(\frac{1}{1}-\frac{1}{506}\)
= tự tính nha
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow M=1-\frac{1}{100}\)
\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)
\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)
\(a,M=1-\frac{1}{100}=\frac{99}{100}\)
\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)
\(=1-\frac{1}{99}=\frac{98}{99}\)
=>\(N=\frac{98}{99}:2=\frac{49}{99}\)
a) 4 x 8 x ( 56 + 44) - 3200
= 32 x 100 - 3200
= 0
b) \(\frac{3+2}{60}\)+ \(\frac{4+3}{168}\)
= \(\frac{5}{60}\)+ \(\frac{7}{168}\)
= \(\frac{1}{8}\)
1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Nhân S với 3 ta có:
S x 3 = 3 +1+ 1/3 + 1/9 + 1/27 + 1/81
Vậy:
S x 3 - S = 3 - 1/243
2S = 728/243
S = 364/243
nhân cả 2 vế với 3 ta có:
sx3=3+1+1/3 +1/9 +1/27 +1/81 +1/243
sx3-s=3 -1/729=2186/729
sx2=2186/729
s=2186/729 :2
s=1093/729
\(A=11x\left(\frac{5}{11x16}+\frac{5}{16x21}+\frac{5}{21x26}+\frac{5}{26x31}+\frac{5}{31x36}+\frac{5}{36x41}\right)\)
\(A=11x\left(\frac{16-11}{11x16}+\frac{21-16}{16x21}+\frac{26-21}{21x26}+...+\frac{41-36}{36x41}\right)\)
\(A=11x\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{36}-\frac{1}{41}\right)\)
\(A=11x\left(\frac{1}{11}-\frac{1}{41}\right)=11x\frac{30}{11x41}=\frac{30}{41}\)
A=\(\frac{55}{11.16}+\frac{55}{16.21}+...+\frac{55}{36.41}\)
A=\(11\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{36}-\frac{1}{41}\right)\)
A=\(11\left(\frac{1}{11}-\frac{1}{41}\right)\)
A=\(11.\frac{30}{451}\)
A=\(\frac{30}{41}\)
a) \(\frac{3}{5}+\frac{6}{11}+\frac{7}{13}+\frac{5}{11}+\frac{2}{5}+\frac{19}{13}=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{5}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)=1+1+2=4\)
b) \(\frac{6}{5}\times\frac{3}{8}+\frac{5}{8}\times\frac{6}{5}-\frac{4}{5}=\frac{6}{5}\times\left(\frac{3}{8}+\frac{5}{8}\right)-\frac{4}{5}=\frac{6}{5}-\frac{4}{5}=\frac{2}{5}\)
c) \(\frac{4\times5\times6\times7\times8}{8\times10\times12\times14\times16}=\frac{1}{2\times2\times2\times2\times2}=\frac{1}{32}\)
a, \(\frac{3}{5}+\frac{6}{11}+\frac{7}{13}+\frac{6}{11}+\frac{2}{5}+\frac{19}{13}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)+\left(\frac{6}{11}+\frac{6}{11}\right)\)
\(=1+2+\frac{12}{11}\)
\(=3+\frac{12}{11}\)
\(=\frac{45}{11}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{19}.\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{1}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{96\cdot101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\cdot\frac{100}{101}\)
\(A=\frac{20}{101}\)
A = 1/5(1-1/6+1/6-1/11+1/11-1/16+.....+1/96-1/101)
= 1/5(1-1/101)=20/101