K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)

=\(1-\frac{1}{56}=\frac{55}{56}\)

b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)

\(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)

=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)

=> \(A=\frac{99}{100}.3=\frac{297}{100}\)

c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)

=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)

e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)

=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)

=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

=\(1-\frac{1}{105}=\frac{104}{105}\)

=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)

9 tháng 4 2017

a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)

\(P=1-\dfrac{1}{56}\)

\(P=\dfrac{55}{56}\)

b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)

\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=3\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}\)

\(A=\dfrac{297}{100}\)

c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}\)

\(B=\dfrac{102}{103}\)

d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)

\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}.\dfrac{102}{103}\)

\(C=\dfrac{170}{103}\)

e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)

\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}.\dfrac{104}{105}\)

\(D=\dfrac{26}{15}\)

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

1 tháng 3 2022

đề bài là j

8 tháng 5 2015

 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(2A=\frac{1}{1}-\frac{1}{100}\)

\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)

Câu B và C làm tương tự.

8 tháng 5 2015

bạn Nhi làm sai rồi

\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được

\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)

kết quả là : \(\frac{49}{100}\)

18 tháng 3 2018

B=\(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{2001.2005}\)

=\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-...+\frac{1}{2001}-\frac{1}{2005}\)

=\(\frac{1}{1}-\frac{1}{2005}\)

=\(\frac{2004}{2005}\)

22 tháng 3 2018

Ta có : \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

           \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

            \(A=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

            \(A=\frac{1}{2}+0+0+..+0-\frac{1}{100}\)

              \(A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)

\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

\(B=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+...+\left(-\frac{1}{100}+\frac{1}{100}\right)-\frac{1}{103}\)

\(B=1+0+0+...+0-\frac{1}{103}\)

\(B=1-\frac{1}{103}=\frac{102}{103}\)

So sánh : A < B vì 49/100 < 102/103 (49.103 < 102 . 100)

19 tháng 3 2024

a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\) 

\(\dfrac{-n-a-n}{n.\left(n+a\right)}\)

\(\dfrac{-2n-a}{n.\left(n+a\right)}\)

b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)

\(\dfrac{2007}{2008}\)

c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)

\(\dfrac{96}{97}\)

24 tháng 3 2019

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

24 tháng 3 2019

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

15 tháng 6 2018

Giải:

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}\)

\(=\dfrac{2008}{2009}\)

c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=\dfrac{1}{1}-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Vậy ...

Các câu sau tương tự

16 tháng 6 2018

b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)

\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)

20 tháng 4 2015

S=\(\frac{1}{1}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{10}\)+...+\(\frac{1}{100}\)-\(\frac{1}{103}\)+\(\frac{1}{103}\)-\(\frac{1}{104}\)+\(\frac{1}{104}\)-\(\frac{1}{105}\)+\(\frac{1}{105}\)-\(\frac{1}{106}\)+\(\frac{1}{106}\)-\(\frac{1}{107}\)

S=1-\(\frac{1}{107}\)

S=\(\frac{106}{107}\)

(Ở đề bài, ở phân số cuối cùng 1/106+107 nên sửa lại thành 1/106.107 sẽ được kết quả như trên)

20 tháng 4 2015

Ta có: \(S=\frac{1}{1}-\frac{1}{103}+\frac{1}{103}-\frac{1}{107}\)

          \(S=1-\frac{1}{107}=\frac{106}{107}\)