Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{4}{3}-\frac{4}{6}\right)+\left(\frac{4}{6}-\frac{4}{9}\right)+\left(\frac{4}{9}-\frac{4}{10}\right)+\left(\frac{4}{12}-\frac{4}{15}\right)\)
\(=\frac{4}{15}-\frac{4}{3}=\frac{-16}{15}\)
C) bạn chỉ ần bỏ các số giống nhau thôi nhé
= 1
b)
3/4 x 8/9 x 15/16 x ... x 99/100 x 120/121 = 3 x 8 x 15 x 99 x 120/ 4 x 9 x 16 x 100 x 121
= ( 1 x 3 ) x ( 2 x 4 ) x ( 3 x 5 ) x ... x ( 9 x 11 ) x ( 10 x 12 ) / ( 2 x 2 ) x ( 3 x 3 ) x ( 4 x 4 ) x ... x ( 10 x 10 ) x ( 11 x 11 )
= ( 1 x 2 x 3 x ... x 10 ) x ( 3 x 4 x 5 x ... x 12 ) / ( 2 x 3 x ... x 11 ) x ( 2 x 3 x ... x 11 ) = 12/11x2 = 6/11
\(\frac{4.5.6}{14.15.16}\)=\(\frac{1.1.3}{7.3.4}\)=\(\frac{1.1.1}{7.1.4}\)=\(\frac{1}{28}\)
\(=\frac{4}{2x4}+\frac{4}{4x6}+\frac{4}{6x8}+...+\frac{4}{18x20}\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{18}-\frac{1}{20}\right)\)
\(=2x\left(\frac{1}{2}-\frac{1}{20}\right)\\ =2x\frac{9}{20}\\ =\frac{9}{10}\)
\(\frac{3}{34}+\frac{34}{34}.\frac{3}{4}=\frac{3}{34}+1.\frac{3}{4}=\frac{3}{34}+\frac{3}{4}=\frac{57}{68}\)
\(\frac{23}{3}.\frac{56}{6}+\frac{86}{78}=\frac{23}{3}.\frac{28}{3}+\frac{43}{39}=\frac{644}{9}+\frac{28}{3}=\frac{728}{9}\)
\(\frac{3}{45}:\frac{1}{4}=\frac{1}{15}.4=\frac{4}{15}\)
\(\frac{5}{34}-\frac{3}{6}=\frac{5}{34}-\frac{1}{2}=\frac{3}{4}\)
Đặt \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)
\(A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{18-16}{16.18}\)
\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{18}\right)\)
\(A=\frac{4}{2}.\frac{4}{9}\)
\(\Rightarrow A=\frac{8}{9}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)
\(=\frac{4}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{18}\right)\)
\(=2.\frac{4}{9}\)
\(=\frac{8}{9}\)