Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{1}-\frac{1}{8}\)
\(=\frac{7}{8}\)'
\(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995\left(1993+1\right)-1}{1995.1993+1994}\)
\(=\frac{1995.1993+1995.1-1}{1995.1993+1994}=\frac{1995.1993+1994}{1995.1993+1994}\)
=1
\(\frac{1995\cdot1994-1}{1993\cdot1995+1994}=\frac{1995\cdot\left(1993+1\right)-1}{1993\cdot1995+1994}=\frac{1995\cdot1993+1995-1}{1993\cdot1995+1994}=\frac{1995\cdot1993+1994}{1995\cdot1993+1994}=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\frac{1995}{1996}.\frac{19961996}{19311931}.\frac{19311931}{19951995}=\frac{1995}{1996}.\frac{1996}{1931}.\frac{1931}{1995}=1\)
\(\frac{1313}{2121}.\frac{165165}{143143}.\frac{424242}{151515}=\frac{13}{21}.\frac{165}{143}.\frac{42}{15}=\frac{1}{1}.\frac{11}{11}.\frac{2}{1}=2\)
\(\frac{2}{7}\)+ \(\frac{5}{14}\)+\(\frac{1}{7}\)+ \(\frac{3}{14}\)=\(\frac{4}{14}\)+\(\frac{5}{14}\)+\(\frac{2}{14}\)+\(\frac{3}{14}\)=\(\frac{14}{14}\)=1
469x281+489x719=469x281+(469+20)x719=469x281+469x719+20x719=469x(281+719)+1438=469x1000+1438=469000+1438=470438
a\(\frac{2}{5}\)+\(\frac{5}{14}\)+\(\frac{1}{7}\)+\(\frac{3}{14}\)=\(\frac{53}{70}\)+\(\frac{1}{7}\)=\(\frac{9}{10}\)+\(\frac{3}{14}\)=\(\frac{39}{35}\)
b\(\frac{1995.1997-1}{1996.1995+1994}\)=3984008001
c 469x281+489x719
=(489-469)x(281+719)
=20x1000
=20000
1995(1996+1)-1/1996.1995+1994
1995.1996+1995-1/1996.1995+1994
1995.1996+1994/1996.1995+1994=1
\(\frac{1995.1997-1}{1996.1995+199}\)= \(\frac{1995.\left(1996+1\right)-1}{1996.1995+199}\)
= \(\frac{1995.1996+1995.1-1}{1996.1995+199}\)
= \(\frac{1995.1996+1994}{1996.1995+199}\)
làm đến đây thì mình chịu