Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995\left(1993+1\right)-1}{1995.1993+1994}\)
\(=\frac{1995.1993+1995.1-1}{1995.1993+1994}=\frac{1995.1993+1994}{1995.1993+1994}\)
=1
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
1995(1996+1)-1/1996.1995+1994
1995.1996+1995-1/1996.1995+1994
1995.1996+1994/1996.1995+1994=1
\(\frac{1995.1997-1}{1996.1995+199}\)= \(\frac{1995.\left(1996+1\right)-1}{1996.1995+199}\)
= \(\frac{1995.1996+1995.1-1}{1996.1995+199}\)
= \(\frac{1995.1996+1994}{1996.1995+199}\)
làm đến đây thì mình chịu
a) 2/5/7 = 2:5:7= 2/35
3/1/2 = 3: 1 : 2 = 3/2
Là : 3/2 : 35 x 2 = 3/35
b) \(\frac{1995\cdot1994-1}{1993\cdot1995+1994}=\frac{1995\cdot1993}{1993\cdot1995+1994}=\frac{1}{1994}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{1}-\frac{1}{8}\)
\(=\frac{7}{8}\)'
=1995*1994-1/(1994-1)*1995+1994
=1995*1994-1/1994*1995-1995+1994
=1995*1994-1/1994*1995-1
=1
\(A=\dfrac{1995\times1994-1}{1993\times1995+1994}\)
\(A=\dfrac{1995\times\left(1993+1\right)-1}{1993\times1995+1994}\)
\(A=\dfrac{1995\times1993+1995-1}{1995\times1993+1994}\)
\(A=\dfrac{1995\times1993+1994}{1995\times1993+1994}\)
\(A=1\)
\(\frac{1995\cdot1994-1}{1993\cdot1995+1994}=\frac{1995\cdot\left(1993+1\right)-1}{1993\cdot1995+1994}=\frac{1995\cdot1993+1995-1}{1993\cdot1995+1994}=\frac{1995\cdot1993+1994}{1995\cdot1993+1994}=1\)