\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

25 tháng 3 2019

Bài 1:

\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)

Bài 2

\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)

Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)

Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)

Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)

12 tháng 6 2020

Bài 2 sai r bạn ơi

31 tháng 7 2018


A = 7/4 . (3333/1212 + 3333/2020 + 3333/3030 + 3333/4242)
A = 7/4 . (11/4 + 33/20 + 11/10 + 11/14)
A = 7/4 . 44/7
A = 11
Chúc bạn học tốt

31 tháng 7 2018

\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{4242}\right)\)

\(A=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{42.101}\right)\)

\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{42}\right)\)

\(A=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}\right)\)

\(A=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)

\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)

\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{6}\right)\)

\(A=\frac{7}{4}.33.\frac{1}{6}\)

\(A=\frac{7.33}{4.6}\)

\(A=\frac{7.3.11}{4.3.2}\)

\(A=\frac{7.11}{4.2}\)

\(A=\frac{77}{8}\)

23 tháng 4 2017

A=7/4.(3333/1212+3333/2020+3333/3030+3333/4242)

A=7/4.(33/12+33/20+33/30+33/42)

A=7/4.33.(1/3*4+1/4*5+1/5*6+1/6*7)

A=231/4.(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)

A=231/4.(1/3-1/7)

A=231/4.4/21

A=11. Vay A=11

Nho k cho minh voi nhe

23 tháng 4 2017

A= 7/4-(33/12x101+33/20x101+33/30x101+33/42x101)

=7/4-[101x(33/12+33/20+33/30+33/42)]

=7/4-44/7

=-127/28

9 tháng 5 2017

Bạn cộng các mẫu trong hoặc và giữ nguyên tử nếu kết quả trong hoặc rút gọn đc thì rút luôn. Đây là cách làm trong hoặc. Tính trong hoặc xong bạn chỉ việc nhân lại với nhau thôi, kết quả cuối cùng rút đc thì rút luôn( ko đc thì thôi, đừng cố rút gọn)

9 tháng 5 2017

A=7/4.(11/4+33/20+11/10+11/14

A=7/4.(385/140+231/140+154/140+110/140)

A=7/4.(880/140)

A=7/4.44/7

A=11

k mình nhé

10 tháng 3 2016

trả lời nè: A=\(\frac{1347}{202}\)(mk bấm máy tính là ra liền )

28 tháng 7 2016

\(\frac{7}{4}.\left(\frac{101.33}{101.12}+\frac{101.33}{101.20}+\frac{101.33}{101.30}+\frac{101.33}{101.42}\right)\)

\(=\frac{7.33}{4}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\\ =\frac{7.33}{4}\left(\frac{35+21+14+1}{420}\right)\)

\(=\frac{7.3.11}{4}.\frac{71}{420}=\frac{7.3.11.71}{4.4.5.3.7}=\frac{781}{100}\)

mk lm chak vớ vẩn rồi