Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{4}-\frac{1}{7}\)
\(=\frac{7}{28}-\frac{4}{28}\)
\(=\frac{3}{28}\)
Chúc bạn học tốt
Ta có :
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\)\(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=\)\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\)\(\frac{1}{4}-\frac{1}{7}\)
\(=\)\(\frac{3}{28}\)
Chúc bạn học tốt ~
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}...\frac{1}{7x8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)\(-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
b,
\(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{11.12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)
\(=\frac{5}{12}\)
bn sẽ tinh theo kieeuranhaan 2 nha xin lỗi mik làm bi này rùi nhưng mik quên mik có sacks xem lại
\(A=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}\)
\(A=\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{11\times12}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{4}-\frac{1}{12}\)
\(A=\frac{3}{12}-\frac{1}{12}=\frac{2}{12}=\frac{1}{6}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
= \(\frac{1}{2}-\frac{1}{7}\)
= \(\frac{5}{14}\)
9/1-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2=0/4
Giải :
ta có
\(\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
=\(\frac{9}{10}-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{9\times10}\right)\)
=\(\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{9}{10}-\left[1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\right]\)
=\(\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
=\(\frac{9}{10}-1+\frac{1}{10}=0\) (Mong online math ks cho mình nhé)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
Chỉ cần viết ra là: \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}=1-\frac{1}{11}=\frac{10}{11}\)
\(A=1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}=\frac{31}{22}\)
\(A=1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(A=1+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(A=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=1+\frac{1}{2}-\frac{1}{11}\)
\(A=\frac{31}{22}\)
Vậy \(A=\frac{31}{22}\)
1/4*5+1/5*6+1/6*7+1/7*8=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
=1/4-1/8
1/8
1/20+1/30+1/42+1/56=1/8