Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(n+2\right)^2-\left(n-2\right)^2=n^2+4n+4-\left(n^2-4n+4\right)=8n\) \(⋮\)\(8\) (đpcm)
b) \(\left(n+7\right)^2-\left(n-5\right)^2=n^2+14n+49-\left(n^2-10n+25\right)=24n-24\)\(⋮\)\(24\) (đpcm)
Bài 2:
mk biến đổi về pt tích sau đó bạn giải nốt nhé
a) \(\left(x-4\right)^2-36=0\)
<=> \(\left(x-4-6\right)\left(x-4+6\right)=0\)
<=> \(\left(x-10\right)\left(x+2\right)=0\)
................
b) \(4x^2-12x=-9\)
<=> \(4x^2-12x+9=0\)
<=> \(\left(2x-3\right)^2=0\)
..............
c) \(\left(x+8\right)^2=121\)
<=> \(\left(x+8\right)^2-121=0\)
<=> \(\left(x+8+11\right)\left(x+8-11\right)=0\)
<=> \(\left(x+19\right)\left(x-3\right)=0\)
...................
Cái đó áp dụng HDT binh phương của 1 hiệu =>(31,8-21,8)2=102=100
bai 3
a) 36-12x+x2
= x2-12x+36
=(x-6)2
b) 4x2+12x+9
=(2x+3)2
c) -25x6-y8+10x3y4
=-(25x6+y8-10x3y4)
=-(5x3)2+(y4)2-10x3y4
=-(5x3)2-2.5x3y4+(y4)
=-(5x3-y4)2
d) \(\dfrac{1}{4}\) x2-5xy+25y2
=(\(\dfrac{1}{2}\) x-5y)2
Bài3:
Bạn =kia làm r nhé
Bài4:
\(a,75^2-25^2\\ =\left(75-25\right)\left(75+25\right)\\ =50.100=5000\\ b,53^2-47^2\\ =\left(53-47\right)\left(53+47\right)\\ =6.100=600\\ c,31,8^2-2.31,8.21,8+21,8^2\\ =\left(31,8-21,8\right)^2\\ =10^2=100\\ d,58,2+2.58,2.41,8+41,8^2\\ =\left(58,2+41,8\right)^2\\ =100^2=1000\)
a) \(1001^2=\left(1000+1\right)^2=1000^2+2.1000.1+1^2=1002001\)
b) \(29,9\times30,1=\left(30-0,1\right).\left(30+0,1\right)=30^2-\left(0,1\right)^2=899,99\)
c) \(\left(31,8\right)^2-2.31,8.21,8+\left(21,8\right)^2=\left(31,8-21,8\right)^2=10^2=100\)
a) 10012 = 1002001
b) 29,9 . 30,1 = 899,99
c) (31,8 )2 - 2 . 31,8 . 21,8 + (21,8 )2 = 100
\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)
\(25+10x+x^2=\left(x+5\right)^2\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2ab^2+\left(2b^2\right)^2=\left(\frac{1}{2}a+2b^2\right)^2\)
\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(y^4-\frac{1}{3}\right)^2\)
\(x^2-10x+25=\left(x-5\right)^2\)
\(x^2+4xy+4y^2=\left(x+2y\right)^2\)
\(\left(3x+2\right)^2-4=\left(3x\right)\left(3x+4\right)\)
\(4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(4x^2-49=\left(2x\right)^2-7^2=\left(2x+7\right)\left(2x-7\right)\)
\(\frac{9}{25}y^4-\frac{1}{4}=\left(\frac{3}{5}y^2\right)^2-\left(\frac{1}{2}\right)^2=\left(\frac{3}{5}y^2-\frac{1}{2}\right)\left(\frac{3}{5}y^2+\frac{1}{2}\right)\)
\(x^{32}-1=\left(x-1\right)\left(x^{31}+x^{30}+...+x+1\right)\)
\(4x^2+4x+1=\left(2x\right)^2+2.2x+1^2=\left(2x+1\right)^2\)
\(x^2-20x+100=\left(x-10\right)^2\)
\(y^4-14y^2+49=\left(y^2\right)^2-2.7.y^2+7^2=\left(y^2-7\right)^2\)
\(A=138^2+124.138+62^2\)
\(=138^2+2.62.138+62^2\)
\(=\left(138+62\right)^2\)
\(=200^2=40000\)
\(B=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+....+3^2+1^2\right)\)
\(=100^2+98^2+....+2^2-99^2-97^2-....-3^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+191+....+7+3\)
\(=\frac{\left(199+3\right).\left[\left(199-3\right):4+1\right]}{2}=5050\)
Vậy B = 5050
\(31,8^2-2.31,8.21,8+21,8^2\)
\(=\left(31,8-21,8\right)^2=10^2=100\)
\(58,2^2+2.58,2.41,8+41,8^2\)
\(=\left(58,2+41,8\right)^2=100^2=10000\)