Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1001^2=\left(1000+1\right)^2=1000^2+2.1000.1+1^2=1002001\)
b) \(29,9\times30,1=\left(30-0,1\right).\left(30+0,1\right)=30^2-\left(0,1\right)^2=899,99\)
c) \(\left(31,8\right)^2-2.31,8.21,8+\left(21,8\right)^2=\left(31,8-21,8\right)^2=10^2=100\)
a) 10012 = 1002001
b) 29,9 . 30,1 = 899,99
c) (31,8 )2 - 2 . 31,8 . 21,8 + (21,8 )2 = 100
B1:
a) \(1001^2=\left(1000+1\right)^2\)
\(=1000^2+2.1000+1=1000000+2000+1\)
= \(1002001\)
b) \(29,9.30,1\)
= \(\left(30-0,1\right)\left(30+0,1\right)\)
= \(30^2-0,1^2=900-0,01=899,99\)
c) \(31,8^2-2.31,8.21,8+21,8^2\)
= \(\left(31,8-21,8\right)^2=10^2=100\)
B2:
a) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b) \(a^6-b^3=\left(a^2\right)^3-b^3\)
= \(\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c) \(8y^3-125=\left(2y\right)^3-5^3\)
= \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
d) \(8z^3+27=\left(2z\right)^3+3^3\)
= \(\left(2z+3\right)\left(4z^2-6z+9\right)\)
B3:
a) A = \(x^2-20x+101\)
= \(x^2-20x+100+1\)
= \(\left(x-10\right)^2+1\ge1\) với mọi x
MinA = 1 khi và chỉ khi x = 10
b) B = \(4a^2+4a+2\)
= \(4a^2+4a+1+1\)
= \(\left(2a+1\right)^2+1\ge1\) với mọi x
MinB = 1 khi và chỉ khi a = \(-\dfrac{1}{2}\)
Cái đó áp dụng HDT binh phương của 1 hiệu =>(31,8-21,8)2=102=100
\(31,8^2-2.31,8.21,8+21,8^2\)
\(=\left(31,8-21,8\right)^2=10^2=100\)
\(58,2^2+2.58,2.41,8+41,8^2\)
\(=\left(58,2+41,8\right)^2=100^2=10000\)
1) \(1001^2=\left(1000+1\right)^2=1000^2-1^2=1000000-1=999999\)
2) \(29,9.30,1=\left(30-0,1\right).\left(30+0,1\right)=30^2-0,1^2=900-0,01=899,99\)