Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4/1 x 5 + 4/5 x 9 + 4/9 x 13 + .... + 4/91 x 95 + 4/95 x 99
A = 1 - 1/5 + 1/5 -1/9 + 1/9 - 1/13 + .... + 1/91 - 1/95 + 1/95 - 1/99
A = 1 - 1/99
A = 98/99
B = 1/6 + 1/12 + 1/20 + ... + 1/132
B = 1/2 x 3 + 1/3 x 4 + 1/4 x 5 + ... + 1/11 x 12
B = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/11 - 1/12
B = 1/2 - 1/12
B = 5/12
\(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+\frac{4}{17\times21}\)\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)\(=1-\frac{1}{21}=\frac{20}{21}\)
#Y/n
3/(1×5) + 3/(5×9) + 3/(9×13) + 3/(13×17) + 3/(17×21)
= 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)
= 3/4 × (1 - 1/21)
= 3/4 × 20/21
= 5/7
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49
\(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+...+\dfrac{1}{45\times49}\)
\(=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{45\times49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{45}-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{49}\right)=\dfrac{1}{4}\times\dfrac{48}{49}=\dfrac{12}{49}\)
\(B=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{125\times129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{125}-\dfrac{1}{129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{129}\right)=\dfrac{1}{4}\times\dfrac{128}{129}=\dfrac{32}{129}\)
\(\dfrac{4\times x}{1\times5}\) + \(\dfrac{4\times x}{5\times9}\) + \(\dfrac{4\times x}{9\times13}\) + \(\dfrac{4\times x}{13\times17}\) = 16
\(x\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+\dfrac{4}{13\times17}\right)\) = 16
\(x\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) \(\dfrac{16}{17}\) = 16
\(x\) = 16 : \(\dfrac{16}{17}\)
\(x\) = 17