\(1.3^3+3.5^3+5.7^3+...+97.99^3\)

Ai biết câu trả lời thì giải chi tiế...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

lớp 6 đã học cái này rồi à ?? 

23 tháng 10 2019

Uk bạn ! Đây là toán bồi dưỡng học sinh giỏi toán 6 ! Giúp mik với ~ !

5 tháng 4 2018

A=1.3+3.5+5.7+...+99.101

6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)

= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101

=1.3+99.101.103

=> A= \(\frac{1.3+99.101.103}{6}\)

25 tháng 4 2018

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

23 tháng 4 2017

A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.........+1/97-1/99

=1-1/97=98/99

CHÕ KIA BN SAI ĐỀ MÌNH SỬA LUÔN CHO RỒI

23 tháng 4 2017

                              giải

A = \(\frac{1}{1.3}\)\(\frac{2}{3.5}\)\(\frac{2}{5.7}\)+....+\(\frac{2}{97.99}\)

     = \(\frac{1}{3}\)+ [ ( \(\frac{1}{3}\)\(\frac{1}{5}\)) +(\(\frac{1}{5}\)-\(\frac{1}{7}\)) +....+ (\(\frac{1}{97}\)-\(\frac{1}{99}\))]

     = \(\frac{1}{3}\)+ ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{97}\)-\(\frac{1}{99}\))

    = \(\frac{1}{3}\)+(\(\frac{1}{3}\)-\(\frac{1}{99}\))

   = \(\frac{1}{3}\)\(\frac{32}{99}\)

    = \(\frac{1}{99}\)

Vậy A = \(\frac{1}{99}\)

                       GIẢI THIK CÁCH LÀM 

HAI SỐ TẠO NÊN TÍCH Ở MẪU CÓ SỐ T1 KÉMSỐ T2 BẰNG 1 SỐ Ở TỬ THÌ PHÂN SỐ ĐÓ SẼ BẰNG HIỆU CỦA  2 PHÂN SỐ CÓ TỬ LAF1 , MẪU LÀ SỐ T1 TRỪ ĐI PHÂN SỐ CÓ TỬ LÀ 1 , MẪU LÀ SỐ T2 

*chú ý rằng chỉ áp dụng cho phân số có mẫu có thừa số t1 kém thừa số t2 bằng tử thôi nha!

mik sẽ lấy vd cho bạn xem 

  \(\frac{3}{5.8}\)=\(\frac{1}{5}\)-\(\frac{1}{8}\)

chúc bạn học giỏi

21 tháng 2 2016

7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101

= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)

= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)

= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)

= 7/2 . (1 - 1/101)

= 7/2 . 100/101

= 350/101

21 tháng 2 2016

\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)

\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

3 tháng 7 2017

\(A=\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{48\cdot50}\)---> Mik nghĩ bn ghi nhầm :]

\(A=\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\right]\)

\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\right]\)

\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{50}\right]=\frac{3}{2}\cdot\frac{12}{25}=\frac{18}{25}\)

Vậy A = 18/25

\(B=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{49\cdot51}\)

\(B=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\right]\)

\(B=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right]\)

\(B=\frac{5}{2}\left[1-\frac{1}{51}\right]=\frac{5}{2}\cdot\frac{50}{51}=\frac{125}{51}\)

3 tháng 7 2017

Mik ghi đúng mà

Huhu ai giúp mik với

Nhanh mik

2 tháng 5 2018

\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{101}{101}-\frac{1}{101}\)

\(A=\frac{100}{101}\)

Chúc bạn học tốt !!! 

2 tháng 5 2018

A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101 

A = 1/1 - 1/101 

A = 101/101 - 1/101 

A = 100/101 

1 tháng 3 2017

3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

1 tháng 3 2017

4)

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

A = \(\frac{50}{101}\)

2, đặt tên biểu thức trên là A. Ta có :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(=1-\frac{1}{5}\)

\(=\frac{4}{5}\)