Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{64}+\frac{1}{128}\)
Sx2 = 1+ \(\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
S x 2 = \(1-\frac{1}{64}\)
S x 2 = \(\frac{63}{64}\)
S = 63/64 : 2
S = 63/128
Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
= \(\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+....+\left(\frac{1}{64}-\frac{1}{128}\right)\)
=\(\frac{1}{2}+\frac{1}{2}-\frac{1}{128}\)
\(=1-\frac{1}{128}=\frac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{32}+\frac{1}{64}\)
\(\frac{32+16+8+4+2}{64}=\frac{62}{64}=\frac{31}{32}\)
Tk mh nhé , mơn nhìu !!!
~ HOK TỐT ~
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)\(+\frac{1}{64}\)
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
= 1/2+1/4+....+1/512+1/512 - 1/512
= 1/2+1/4+....+1/256+1/256 - 1/512
........
= 1/2+1/2 - 1/512 = 1-1/512 = 511/512
k mk nha
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
=\(\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)
=\(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{4}-\frac{3}{8}+\frac{3}{8}-\frac{3}{16}+\frac{3}{16}-\frac{3}{36}\)
=\(\frac{3}{1}-\frac{3}{36}\)=\(\frac{35}{12}\)
Gọi biểu thức trên là A
Ta có :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}+\frac{1}{256}-\frac{1}{256}\)
\(2A=1+A-\frac{1}{256}\)
\(2A=A+1-\frac{1}{256}\)
\(2A-A=\frac{255}{256}\)
\(A=\frac{255}{256}\)
Gọi \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right]\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^8}\)
\(A=1-\frac{1}{2^8}=1-\frac{1}{256}=\frac{255}{256}\)
ĐẶT BIỂU THỨC TRÊN LÀ M
TA CÓ \(2M=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{64}\)
\(\Rightarrow2M-M=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{64}-\frac{1}{2}+\frac{1}{4}+..+\frac{1}{128}\)
\(\Rightarrow M=1+\frac{1}{28}\)
A= \(\frac{1}{2}\)+\(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
2A=2(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
=1+\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
2A-A= (\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)) -(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
A=1-\(\frac{1}{128}\)
A=\(\frac{127}{128}\)