Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}=\frac{4}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{4}{5}\)
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{12}{15}+\frac{22}{33}+\frac{48}{64}\)
\(=\frac{11}{33}+\frac{16}{64}+\frac{3}{15}+\frac{12}{15}+\frac{22}{33}+\frac{48}{64}\)
\(=\left(\frac{11}{33}+\frac{22}{33}\right)+\left(\frac{16}{64}+\frac{48}{64}\right)+\left(\frac{3}{15}+\frac{12}{15}\right)\)
\(\frac{33}{33}+\frac{64}{64}+\frac{15}{15}\)
\(=1+1+1\)
\(=3\)
C=\(\frac{1}{3}+\frac{1}{10}+\frac{1}{15}+\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+\frac{1}{35}+\frac{1}{40}\)
=\(\frac{1}{3}+\frac{1}{15}+\frac{1}{10}+\frac{1}{20}+\frac{1}{30}+\frac{1}{40}+\frac{1}{25}+\frac{1}{35}\)
=\(\frac{5}{15}+\frac{1}{15}+\frac{4}{40}+\frac{2}{40}+\frac{1}{40}+\frac{1}{30}+\frac{1}{25}+\frac{1}{35}\)
=\(\frac{6}{15}+\frac{7}{40}+\frac{107}{1050}\)