Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1*2+1/2*3+...+1/9*10
=1-1/2+1/2-1/3+...+1/9-1/10
=(1-1/10)+(1/2-1/2)+...+(1/9-1/9)
=(10/10-1/10)+0+...+0=9/10
a) 3/5x7/8:10/9=21/40:10/9=189/400
b) 3 2/7x2 1/4:1 2/5=23/7x9/4:7/5=207/28:7/5=1035/196
c) 6/9+24/15+12/9+6/15=34/15+12/9+6/15=18/5+6/15=4
d) 3 2/9-( 1 5/8+1 2/9 )=29/9-(13/8+11/9)=29/9-205/72=3/8
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{8}\)
\(\Rightarrow A=\frac{3}{8}\)
\(A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{7}-\frac{1}{8}\right)\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
Đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
\(A=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{10.11}{2}}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=2\cdot\frac{9}{22}=\frac{9}{11}\)
Vậy A = \(\frac{9}{11}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+10}\)
\(=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)