K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

B=(2+1)(22+1)(24+1)(28+1)(216+1)−232

=1.(2+1)(22+1)(24+1)(28+1)(216+1)−232

=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)−232

=(22-1)(22+1)(24+1)(28+1)(216+1)−232

=(24-1)(24+1)(28+1)(216+1)−232

=(28-1)(28+1)(216+1)−232

=(216-1)(216+1)−232

=232-1-232

=-1

9 tháng 7 2015

A = ( 2 +1 )( 2^2  + 1 )...(2^16+1) - 2^32

A = ( 2 - 1) ( 2 + 1 )(2^2 + 1) .... (2^16 + 1) - 2^32

A = (2^2 - 1) (2^2 + 1) ...(2^16 + 1) - 2^32

A =( 2^ 4 - 1)( 2^4 + 1 )( 2^8 + 1) (2^16+1) -2^32

A = ( 2^8 - 1)( 2^ 8 + 1) ( 2^ 16 + 1)- 2^32

A = ( 2^16 -  1 )( 2^16 + 1) - 2^32

A = 2^32 - 1 - 2^32

A = - 1

5 tháng 8 2017

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

18 tháng 10 2018

16x4y2-25a2b2

16 tháng 10 2019

1) \(x^6+1\)

\(=x^6+x^4-x^4+x^2-x^2+1\)

\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

2) \(x^6-y^6\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

15 tháng 9 2020

a) 1272 + 146.127 + 732

= 1272 + 2.73.127 + 732

= (127 + 73)2 = 2002 = 40000

b) 98 . 28 - (184 - 1)(184 + 1)

= (9.2)8 - 188 + 1

= 188 - 188 + 1 = 1

c) \(\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2.75.125+75^2}=\frac{560.1000}{\left(125+75\right)^2}=\frac{560000}{200^2}\)

\(=\frac{560000}{40000}=14\)

15 tháng 9 2020

a) 1272 + 146.127 + 732

= 1272 + 2.73.127 + 732

= ( 127 + 73 )2

= 2002 = 40 000

b) 98.28 - ( 184 - 1 )( 184 + 1 ) 

= ( 9.2 )8 - [ ( 184 )2 - 12 ]

= 188 - 188 + 1

= 1

c) \(\frac{780^2-220^2}{125^2+150\cdot125+75^2}\)

\(=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2\cdot75\cdot125+75^2}\)

\(=\frac{560\cdot1000}{\left(125+75\right)^2}\)

\(=\frac{560000}{200^2}\)

\(=\frac{560000}{40000}=14\)

17 tháng 7 2018

\(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)

\(=\)\(x^2-27y^3\)

\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)

\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)

làm nốt nha

12 tháng 7 2018

a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)

Vậy A<B

b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)

Vậy A>B

14 tháng 10 2020

a) \(9\left(2x-3\right)^2-4\left(x+1\right)^2\)

\(=\left[3\left(2x-3\right)-2\left(x+1\right)\right]\left[3\left(2x-3\right)+2\left(x+1\right)\right]\)

\(=\left(6x-9-2x-2\right)\left(6x-9+2x+2\right)\)

\(=\left(4x-11\right)\left(8x-7\right)\)

b) \(\left(x^2+4y^2-20\right)-16\left(xy-4\right)^2\)

\(=\left[\left(x^2-4xy+4y^2\right)-4\right]\left[\left(x^2+4xy+4y^2\right)-36\right]\)

\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)

\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)

14 tháng 10 2020

a. 9 ( 2x - 3 )2 - 4 ( x + 1 )2

= [ 3 ( 2x - 3 ) ]2 - [ 2 ( x + 1 ) ]2

= [ 3 ( 2x - 3 ) - 2 ( x + 1 ) ] [ 3 ( 2x - 3 ) + 2 ( x + 1 ) ]

= ( 6x - 9 - 2x - 2 ) ( 6x - 9 + 2x + 2 )

= ( 4x - 11 ) ( 8x - 7 )

b. ( x2 + 4y2 - 20 )2 - 16 ( xy - 4 )2

= ( x2 + 4y2 - 20 )2 - [ 4 ( xy - 4 ) ]2

= [ x2 + 4y2 - 20 - 4 ( xy - 4 ) ] [ x2 + 4y2 - 20 + 4 ( xy - 4 ) ]

= ( x2 + 4y2 - 20 - 4xy + 16 ) ( x2 + 4y2 - 20 + 4xy - 16 )

 = ( x2 + 4y2 - 4xy - 4 ) ( x2 + 4y2 + 4xy - 36 )

= [ ( x - 2y )2 - 22 ] [ ( x + 2y )2 - 62 ]

= ( x - 2y - 2 ) ( x - 2y + 2 ) ( x + 2y - 6 ) ( x + 2y + 6 )