Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.2^n+2^{2+n}=9.2^5\)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(2^n.\frac{9}{2}=9.2^5\)
\(2^n=9.\frac{2}{9}.2^5\)
\(2^n=2.2^5\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
\(\frac{1}{2}\)\(\times\)\(2^n\)\(+\)\(2^{2+n}\)\(=\)\(9\)\(\times\)\(2^5\)
\(\frac{1}{2}\)\(\times\)\(2^n\)\(\times\)\((\)\(1\)\(+\)\(2^2\)\()\)\(=\)\(9\)\(\times\)\(2^5\)
\(\frac{1}{2}\)\(\times\)\(2^n\)\(\times\)\(5\)\(=\)\(9\)\(\times\)\(2^5\)
\(2^n\)\(=\)\(9\)\(\times\)\(32\)\(\div\)\(5\)\(\times\)\(2\)
\(2^n\)\(=\)115,2
khongcamxuc_123 đó nha bn bn phải giữ lời hứa đấy nha
~~~~ hok tốt ~~~~!!!!
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
Theo đề ta có:
\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}\) và \(a+b-2c=70\)
Áp dụng tính chất của dãy tỉ số bằng nhay ta có:
\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}=\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{2c}{2.7}=\dfrac{a+b-2c}{2+5-14}=\dfrac{70}{-7}=-10\)
\(\dfrac{a}{2}=-10\Rightarrow a=\left(-10\right).2=-20\)
\(\dfrac{b}{5}=-10\Rightarrow b=\left(-10\right).5=-50\)
\(\dfrac{c}{7}=-10\Rightarrow c=\left(-10\right).7=-70\)
Vậy \(a=-20;b=-50;c=-70\)
Gọi số hoa của 3 bạn lần lượt là x, y , z
Vì x,y,z TLT vớ 4,5,6
=> x/4=y/5=z/6=k
Theo t/c dãy tỉ số bằng nhau :
k= x+y+z/ 4+5+6 = 75/15=5
=> x= 5.4=20
y= 5. 5 = 25
z= 5.6=30
Vậy ..
Gọi số hoa 3 bạn hái được lần lượt là a,b,c \(\left(a,b,c\inℕ^∗\right)\)
Theo đề bài ra,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{75}{15}=6\)
\(\Rightarrow\hept{\begin{cases}a=6.4=24\\b=6.5=30\\c=6.6=36\end{cases}}\)
Vậy ....