Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1-2)+(3-4)+...+(2021-2022)+2023
=2023-(1+1+1+...+1)
=2023-1011
=1012
222222222222222222222222222222222222222222222222222222222222
a,(-1).(-2).(-3).(-4).(-5).(-6).(-7)
=-(1.2.3.4.5.6.7)
=-(6.20.42)=-5040
b,(-75).(-27).(-x) với x=4
Thay x vào (-75).(-27).(-x) ,ta có:
(-75).(-4).(-27)=300.(-27)=-8100
c,2.a.b^2 với a=4,b=-6
Thay a=4,b=-6 vào 2.a.b^2 ta có:
2.4.-6^2=8.36=288
Vậy nha:) Bye.
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023
S=1+2-3-4+5+6-7-8+9+.....+2018-2019-2020+2021+2022
S=[1+2-3-4]+[5+6-7-8]+....+[2017+2018-2019-2020]+2021+2022
S=-4+[-4]+....+[-4]+4043
S=-4. 531+4043
S=-2124+4043
S= 1919
NHỚ THEO DÕI MÌNH NHA
Mn giúp mk câu này đi cần gấp
mn ơi giúp mk vsss