Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.P=x^2\left(x+y\right)-xy\left(x-y\right)-x\left(y^2+1\right)\)
\(=x^3+x^2y-x^2y+xy^2-xy^2-x\)
\(=x^3-x=1^3-1=0\)
\(2,Q=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)
\(=x^2-2x-4x+8-\left(x^2-3x-x+4\right)\)
\(=x^2-6x+8-x^2+4x-4\)
\(=-2x+4\)
\(=-2.\frac{7}{4}+4=-\frac{7}{2}+4=\frac{1}{2}\)
1. P = x2.(x + y) - xy.(x - y) - x.(y2 + 1)
P = x2.x + x2.y + (-xy).x + (-xy).(-y) + (-x).y2 + (-x).1
P = x3 + x2y - x2y + xy2 - xy2 - x
P = x3 + (x2y - x2y) + (xy2 - xy2) - x
P = x3 - x (1) (dạng này rút gọn cho đẹp) :))
Thay x = 1; y = 2006 vào (1), ta có:
P = x3 - x = 13 - 1
= 0
Vậy: ????
2. Q = (x - 4)(x - 2) - (x - 1)(x - 3)
Q = x.x + x.(-2) + (-4).x + (-4).(-2) + (-x).x + (-x).(-3) + (-1).x + (-1).(-3)
Q = x2 - 2x - 4x + 8 - x2 + 3x - x + 3
Q = (x2 - x2) + (-2x - 4x + 3x - x) + (8 + 3)
Q = -4x + 11 (1)
x = 1 3/4 = 7/4
Thay x = 7/4 vào (1), ta có:
Q = -4x + 11 = -4.(7/4) + 11
= 4
Vậy: ...
Q chả cần phải đổi mà cứ thế thay vào cũng đc
a)
\(A=x^2y-y+xy^2-x\)
\(A=\left(x^2y-x\right)-\left(y-xy^2\right)\)
\(A=x.\left(xy-1\right)-y.\left(1-xy\right)\)
\(A=x.\left(xy-1\right)+y.\left(xy-1\right)\)
\(A=\left(xy-1\right).\left(x+y\right)\)
Thay \(x=-5\) và \(y=2\) vào biểu thức A, ta được:
\(A=\left[\left(-5\right).2-1\right].\left[\left(-5\right)+2\right]\)
\(A=\left(-11\right).\left(-3\right)\)
\(A=33.\)
Vậy giá trị của biểu thức A tại \(x=-5\) và \(y=2\) là \(33.\)
Chúc bạn học tốt!
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
yx=10⇒x=10y
M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}M=8x2−24xy16x2−40xy=8x(x−3y)8x(2x−5y)=x−3y2x−5y
=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}=10y−3y2.10y−5y=715
Câu 2
2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x
=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3
2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y
x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)
2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25
(b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100
Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5
Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok!
Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)
: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)
\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)
P/s: Lâu ko làm nên cũng ko chắc đâu nhé!
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
=28
tính r