Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left[16-2\frac{2}{3}\cdot4\frac{3}{4}\right]\)
\(< =>\left[18\frac{1}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left[16-\frac{38}{3}\right]\)
\(< =>\left[18\frac{1}{6}-\frac{13}{10}\right]:\frac{10}{3}\)
\(< =>\frac{253}{15}:\frac{10}{3}\)
\(< =>\frac{253}{50}\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+...+\frac{1+2+3+...+16}{16}\)
\(A=1+\frac{2\left(2+1\right):2}{2}+\frac{3\cdot\left(3+1\right):2}{3}+\frac{4\left(4+1\right):2}{4}+...+\frac{16\left(16+1\right):2}{16}\)
\(A=1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{2+3+4+5+...+17}{2}\)
\(A=\frac{152}{2}\)
\(A=76\)
Đặt \(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+...+\frac{1+2+3+...+16}{16}\)
\(A=1+\frac{2\left(2+1\right):2}{2}+\frac{3\left(3+1\right):2}{3}+\frac{4\left(4+1\right):2}{4}+...+\frac{16\left(16+1\right):2}{16}\)
\(A=1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{2+3+4+5+...+17}{2}\)
\(A=\frac{152}{2}\)
\(A=76\)
\(=1+\frac{3}{2}+2+\frac{5}{2}+3+\frac{7}{2}+...+8+\frac{17}{2}\)
\(=\left(1+2+...+8\right)+\left(\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\right)=36+\frac{80}{2}=36+40=76\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)
\(B=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)
\(B=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(B=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)
\(B=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)
\(=\frac{-\frac{1}{8}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}\)
\(=\frac{-\frac{1}{8}-\frac{27}{16.4}.4}{-2+\frac{9-6}{16}}\)
\(=\frac{-\frac{1}{8}-\frac{27}{16}}{-2+\frac{3}{16}}\)
\(=\frac{-\left(\frac{2+27}{16}\right)}{\frac{-32+3}{16}}\)
\(=\frac{-\frac{29}{16}}{\frac{-29}{16}}\)
\(=1\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)