Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề như này thì bạn phải thêm y^3 vào mới tính được giá trị biểu thức.
Mình thêm y^3 theo ý mình. Bạn xem thử nhé!
\(R=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)
= \(\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)
= \(\left(2x+y+y\right)^3=8\left(x+y\right)^3=8.50^3=...\)
\(2x^2+y^2+13z^2-4yz-6x+9=0\)
\(\Leftrightarrow\left(2x^2-6x+\dfrac{9}{2}\right)+\left(y^2-4yz+4z^2\right)+9z^2+\dfrac{9}{2}=0\)
\(\Leftrightarrow2\left(x^2-3x-\dfrac{9}{4}\right)+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)
\(\Leftrightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)
Dễ thấy: \(2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2\ge0\forall x,y,z\)
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x,y,z\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}2\left(x-\dfrac{3}{2}\right)^2=0\\\left(y-2z\right)^2=0\\9z^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\y=2z\\z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\\z=0\end{matrix}\right.\)
Khi đó \(P=\dfrac{2\cdot\dfrac{3}{2}\cdot0+\dfrac{3}{2}\cdot0-\left(\dfrac{3}{2}\right)^2-2\cdot0^2-0\cdot0}{\left(\dfrac{3}{2}\right)^2-0^2}=-1\)
Đệch, theo đề bài của bn thì Thắng làm đúng òi
Hình như đề thiếu -6xz mới ra -4/5
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
Bài làm
a) A = x2 - y2 - 2y - 1 Tại x = 4,5 và y = 94,5
Ta có: A = x2 - y2 - 2y - 1
= x2 - ( y2 + 2y + 12 )
= x2 - ( y + 1 )2
= ( x + y + 1 )( x - y - 1 )
Thay x = 4,5 và y = 94,5 vào A ta được:
A = ( 4,5 + 94,5 + 1 )( 4,5 - 94,5 - 1 )
A = 100 . ( -91 )
A = -9100
Vậy A = -9100 tại x = 4,5 và y = 94,5
# Học tốt #
a) \(B=\left(x^2+2x+1\right)+\left(y^2-2.2.y+2^2\right)=\left(x+1\right)^2+\left(y-2\right)^2\)
thay x=99 và y=102 vào B ta có:
\(B=\left(99+1\right)^2+\left(102-2\right)^2=100^2-100^2=0\)
b)
b) \(2x^2+16x+32-2y^2=2\left(x^2+8x+16-y^2\right)=2\left(\left(x+4\right)^2-y^2\right)=2\left(x+4-y\right)\left(x+4+y\right)\)
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
1.a) xy + 2y - x2 + 4
= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )
b) 2x2 + y2 + 3xy
= ( 2x2 + 2xy ) + ( y2 + xy )
= 2x ( x + y ) + y ( x + y )
= ( x + y ) ( 2x + y )
2.
x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31
A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37