K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a)xm+4+xm+3-x-1

=(xm+4-x)+(xm+3-1)

=x(xm+3-1)+(xm+3-1)

=(x+1)(xm+3-1)

Với x=-2 ta có:... bn tự thay

b)x6-x4+2x3+2x2=x6-2x5+2x4+2x5-4x4+4x3+x4-2x3+2x2

=x4(x2-2x+2)+2x3(x2-2x+2)+x2(x2-2x+2)

=(x4+2x3+x2)(x2-2x+2)

=[x2(x2+2x+1)](x2-2x+2)

=x2(x+1)2(x2-2x+2)

Với x=-2 bn tự thay nhé h mk bận

14 tháng 7 2016

5x2 - 4(x2 - 2x + 1) - 5 = 0

=> 5x2 - 4x2 + 8x - 4 - 5 = 0 

=> x2 + 8x - 9 = 0

=> x2 + 9x - x - 9 = 0 

=> x(x + 9) - (x + 9) = 0

=> (x + 9)(x - 1) = 0

=> x + 9 = 0 => x = -9

hoặc x - 1 = 0 = > x = 1

                                                                       Vậy x = -9, x = 1

14 tháng 7 2016

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)

\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)

\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)

\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)

\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)

\(\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)

4 tháng 8 2016
x=-6.5 Còn câu 2 làm biếng làm quá

\(2x^2-x-15\)

\(=\left(x-3\right)\left(x+\frac{5}{2}\right)\)

\(x^4+x^2+1\)

22 tháng 7 2016

a)   \(2x^2-x-15=2x^2-6x+5x-15=2x\left(x-3\right)+5\left(x-3\right)=\left(x-3\right)\left(2x-5\right)\)

4 tháng 8 2016
4x(x^2+y^2+2xy-4)=4x[(x+y)^2-4]=4x(x+y+2)(x+y-2)
4 tháng 8 2016

1-x-2x^2

= 1-x-2x.2x

= 1 - ( x + 2x.2x)

= 1 - 5x

Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.

4 tháng 8 2016

\(A=1-x-2x^2\)

\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)

\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(\left(x+\frac{1}{4}\right)^2\ge0\)

\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)

\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)

Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)