Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)
\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)
\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)
\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)
\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)
a/ \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2=2\left(sin^2\alpha+cos^2\alpha\right)=2\)
b/ \(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cotg^2\alpha\right)\left(1-cos^2\alpha\right)\)
\(=\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)\left(1-sin^2\alpha\right)-\left(1+\frac{cos^2\alpha}{sin^2\alpha}\right)\left(1-cos^2\alpha\right)\)
\(=\frac{1}{cos^2\alpha}.cos^2\alpha-\frac{1}{sin^2\alpha}.sin^2\alpha=1-1=0\)
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
\(A=2\sin^2\alpha+5\left(1-\sin^2\alpha\right)=5-3\sin^2\alpha=5-3\left(\frac{2}{3}\right)^2\)=\(\frac{11}{3}\)
bài này dùng hình vẽ để tính các cạnh tam giác vuoog đc ko nhỉ ?
A B C c b a
Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a
a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)
\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)
\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)
b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)
A = sin6α+ 3sin2α .cos2α + cos6α = sin6α + 3sin2α .cos2α ( sin2α + cos2α ) + cos6α = sin6α + 3sin4 α .cos2α + 3sin4α .cos4α + cos6α = (sin2α + cos2α )2 |
= 1
\(A=2\left(sin^2a+cos^2a\right)+3cos^2a=2+3\cdot cos^2a\)
mặt khác: \(sina=\dfrac{2}{3}\Leftrightarrow a=sin^{-1}\left(\dfrac{2}{3}\right)\)
thay vào A , ta được:
\(A=2+3\cdot sin^{-1}\left(\dfrac{2}{3}\right)=....\) (số xấu quá!)
A=2(sin2a + cos2a) +3 cos2a=2+ 3 cos2a
ta có sin2a+cos2a=1
(2/3)2 + cos2a =1
cosa=\(\dfrac{\sqrt{5}}{3}\)
A=....
\(\hept{\begin{cases}sin^2a+c\text{os}^2a=1\\sina=2cosa\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{2}{\sqrt{5}}\\c\text{os}a=\frac{1}{\sqrt{5}}\end{cases}}\)hoặc \(\orbr{\begin{cases}sina=-\frac{2}{\sqrt{5}}\\c\text{os}a=-\frac{1}{\sqrt{5}}\end{cases}}\)
Thế vô đi
Ta có : \(\sin\alpha=\frac{2}{3}\Rightarrow\sin^2\alpha=\frac{4}{9}\)
Lại có : \(sin^2\alpha+cos^2\alpha=1\Rightarrow cos^2\alpha=1-sin^2\alpha\) thay vào C
\(C=5\left(1-sin^2\alpha\right)+2sin^2\alpha=5-3sin^2\alpha=5-3.\frac{4}{9}=\frac{11}{3}\)