Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x5 - 5x4 + 5x3 - 5x2 + 5x -1
A = x5 - ( 4 + 1 ) x4 + ( 4 + 1 ) x3 - ( 4 + 1 ) x2 + ( 4 + 1 )x - 1
Thay 4= x vào biểu thức A , ta đc :
A= x5 - ( x + 1 ) x4 + ( x + 1 ) x3 - ( x + 1 ) x2 + ( x + 1 )x - 1
A= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A= x - 1
Thay x = 4 vào biểu thức A, ta đc
A= 4 - 1
A= 4
b, B= x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5
B= x2006 - ( 7 + 1 ) x2005 + ( 7 + 1 ) x2004 - .......+ ( 7 + 1 ) x2 - ( 7 + 1 ) x - 5
Thay 7 = x vào biểu thức B ta đc
B= x2006 - ( x + 1 ) x2005 + ( x + 1 )x2004 - ......+ ( x + 1 ) x2 + ( x + 1 )x - 5
B = x2006 - x2006 - x2005 + x2005 + x2004 - .....+ x3 - x2 + x2 + x - 5
B= x - 5
Thay x = 7 vào biểu thức B, ta đc:
B = 7 - 5
B = 2
( PCY ❤ )
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
Ta có
8-1=x
Thay vào B
=>\(B=x^{2006}+\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-.......+\left(x+1\right)x^2-\left(x+1\right)x-5\)
=>tự giải típ
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
2x^4 - 4x^3 - 2x^4 - 8x^2 - 6x + 12 - 4x^3 - 8x^2 4x^3 - 8x^2 - 6x + 12 - -6x + 12 -6x + 12 0 2x - 4 x^3 - 2x^2 - 3
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
Bài 1:
Gọi bốn số liên tiếp cần tìm là a;a+1;a+2;a+3(Điều kiện: a∈N)
Theo đề bài, ta có:
\(a\cdot\left(a+1\right)+146=\left(a+2\right)\left(a+3\right)\)
\(\Leftrightarrow a^2+a+146=a^2+5a+6\)
\(\Leftrightarrow a^2+a+146-a^2-5a-6=0\)
\(\Leftrightarrow-4a+140=0\)
\(\Leftrightarrow-4a=-140\)
hay a=35(nhận)
Vậy: Bốn số liên tiếp cần tìm là 35;36;37;38
Bài 2:
Ta có: \(N=3\cdot\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{5}{117\cdot119}+\frac{8}{39}\)
\(=3\cdot\frac{1}{117\cdot119}-2852\cdot\frac{1}{117\cdot119}-5\cdot\frac{1}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{39\cdot357}+\frac{2856}{39\cdot357}=\frac{2}{20943}\)
\(A=x^5-5x^4+5x^3-5x^2+5x-6\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(=-2\)