Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{a^5\left(1+a+a^2+a^3\right)}{a^{-6}\left(a+1\right)+a^{-8}\left(a+1\right)}=\dfrac{a^5\left(a+1\right)^2\left(a^2-a+1\right)}{\left(a+1\right)\cdot a^{-8}\left(a^2+1\right)}\)
\(=\dfrac{a^{13}\cdot\left(a+1\right)\left(a^2-a+1\right)}{a^2+1}\)
\(=\dfrac{2018^{13}\left(2018^3-1\right)}{2018^2+1}\simeq1.85\cdot10^{46}\)
hình như bạn viết thiếu đề thì phải? phải có giá trị của x bằng bao nhiêu mới tính được.
Vì \(x=2017\Rightarrow x+1=2018\)
Thay \(x+1=2018\)vào biểu thức A ta được :
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
với ĐKXĐ ta có
=\(\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{7\left(x-1\right)}\)
=\(\frac{4x}{\left(x+1\right)\left(x-1\right)}\times\frac{7\left(x-1\right)}{2x}\)
=\(\frac{14}{x+1}\)
b, x=6(t/m)
khi x=6 thì A=\(\frac{14}{6+1}=2\)
c,A=7<=>\(\frac{14}{x+1}=7\)
\(\Leftrightarrow7x+7=14\)
\(\Leftrightarrow7x=7\Leftrightarrow x=1\left(loại\right)\)
Vậy ko có giá trị x để A=7
Bài này dễ mà...đặt nhân tử chung ra đi
Á.... biết làm rồi Thanks nhen