Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
Bài 1:
\(a.5^5-5^4+5^3\)
\(=5^3.5^2-5^3.5+5^3.1\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.3.7⋮7\)
\(\)
\(\)
\(\)
Bài 2:
\(a.32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow n=2\)
\(b.9.27\le3^n\le243\)
\(\Rightarrow3^2.3^3\le3^n\le3^5\)
\(\Rightarrow3^5\le3^n\le3^5\)
\(\Rightarrow n=5\)
a, Tìm ĐKXĐ của biếu thức A
Để biểu thức A xác định thì
\(\left\{{}\begin{matrix}x-7\ne0\\x+7\ne0\\x^2-49\ne0\\x-5\ne0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x\ne7\\x\ne-7\\x\ne5\end{matrix}\right.\)
b, \(A=\dfrac{7\cdot\left(x+7\right)-5\left(x-7\right)-9x+49}{\left(x-7\right)\left(x+7\right)}\cdot\dfrac{2\left(x+7\right)}{x-5}\)
\(A=\dfrac{7x+49-5x+35-9x+49}{x-7}\cdot\dfrac{2}{x-5}\)
còn lại làm nốt nha !!!
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)
\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
hay x<=4
b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)
=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)
=>12x+2+3x+9>=30x+18+48-20x
=>15x+11>=10x+66
=>5x>=55
hay x>=11
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
với ĐKXĐ ta có
=\(\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{7\left(x-1\right)}\)
=\(\frac{4x}{\left(x+1\right)\left(x-1\right)}\times\frac{7\left(x-1\right)}{2x}\)
=\(\frac{14}{x+1}\)
b, x=6(t/m)
khi x=6 thì A=\(\frac{14}{6+1}=2\)
c,A=7<=>\(\frac{14}{x+1}=7\)
\(\Leftrightarrow7x+7=14\)
\(\Leftrightarrow7x=7\Leftrightarrow x=1\left(loại\right)\)
Vậy ko có giá trị x để A=7
\(=\dfrac{a^5\left(1+a+a^2+a^3\right)}{a^{-6}\left(a+1\right)+a^{-8}\left(a+1\right)}=\dfrac{a^5\left(a+1\right)^2\left(a^2-a+1\right)}{\left(a+1\right)\cdot a^{-8}\left(a^2+1\right)}\)
\(=\dfrac{a^{13}\cdot\left(a+1\right)\left(a^2-a+1\right)}{a^2+1}\)
\(=\dfrac{2018^{13}\left(2018^3-1\right)}{2018^2+1}\simeq1.85\cdot10^{46}\)