K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)

13 tháng 7 2017

Được cập nhật 41 giây trước (17:23)

 
 

Ta có :
2017(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)(14 +25 +...+20172020 )
=(114 )+(125 )+...+(120172020 )
=34 +35 +....+32020 
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5 
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1

DD
6 tháng 3 2021

Đặt \(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2010}\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

Ta có: 

\(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2020}\)

\(A=1-\frac{1}{4}+1-\frac{2}{5}+1-\frac{3}{6}+...+1-\frac{2017}{2020}\)

\(A=\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+...+\frac{3}{2020}\)

\(A=3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

\(B=\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\)

\(B=\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}{\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}=\frac{3}{\frac{1}{5}}=15\)

28 tháng 7 2018

Ta có: 2017 -1/4 -2/5 -3/6 -... -2017/2020

          = (1-1/4)+(1-2/5)+(1-3/6)+...+(1-2017/2020)

          = 3/4 + 3/5 + 3/6 +...+ 3/2020

          = 15 (1/20+ 1/25+ 1/30+...+ 1/10100)

Vậy B = 15.

Chúc bạn học tốt.

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

4 tháng 5 2018

Hello Triệu Mẫn điên .Tui là Nguyên 6n1^^

Tui đang suy nghĩ 

Tui biết làm nhưng không nói 

chỉ nói kết quả bằng 10

4 tháng 5 2018

Nguyên trả lời rất chính xác

25 tháng 3 2019

Bài 1:

\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)

Bài 2

\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)

Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)

Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)

Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)

12 tháng 6 2020

Bài 2 sai r bạn ơi

18 tháng 3 2020

\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)

\(4A=1-\frac{1}{3^{20}}\)

\(A=\frac{1-\frac{1}{3^{20}}}{4}\)

\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)

Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20

             1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)

              1/M=[(3^20-1)/8]-[(3^21-3)/8]

               1/M=[3^20-3^21+(-2)]/8

Bạn tự làm tiếp nhé

sao dể zữ vậy