\(\frac{1}{1+x+xy}\)+\(\frac{1}{1+y+yz}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

1a Để \(\frac{x+1}{2}\)=\(\frac{8}{x+1}\)

\(\Rightarrow\)x+1.(x+1)=2.8=16

\(\Rightarrow\)x+1(x+1)=4.4

suy ra x+1=4

x=4-1

x=3

18 tháng 2 2020

a)(x+1)(x+1)=16

(x+1)^2=4^2

+)x+1=4

x=3

+)x+1=-4

x=-5

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

11 tháng 7 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\)\(\left(1-\frac{1}{5}\right)\)

=\(\frac{1}{2}.\)\(\frac{2}{3}\cdot\frac{3}{4}\)\(\cdot\frac{4}{5}\)

=\(\frac{1}{5}\)

11 tháng 7 2016

( 1 - 12 ) x ( 1 - 13 ) x ( 1 - 14 ) x ( 1 - 15 )

\(\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times\left(\frac{4}{4}-\frac{1}{4}\right)\times\left(\frac{5}{5}-\frac{1}{5}\right)\)

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)

\(\frac{1\times2\times3\times4}{2\times3\times4\times5}\)

\(\frac{1}{5}\)

<br class="Apple-interchange-newline"><div id="inner-editor"></div>14 18 +116 +  132 164  + \(\frac{1}{128}\) MC : 128

\(\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

\(\frac{32+16+8+4=2+1}{128}\)

\(\frac{207}{128}\)

26 tháng 7 2021

\(P=1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{999}\)

\(P=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{1000}{999}\)

\(P=\frac{1000}{2}\)

\(P=500\)

\(P=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot...\cdot1\frac{1}{100}\)

\(P=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{101}{100}\)

\(P=\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}=\frac{101}{2}\)

11 tháng 5 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

29 tháng 4 2018

ra 1 bạn ơi

29 tháng 4 2018

suy ra A=1/23+1/7-1/1009.23.7.1009 phần 1/23+1/7-1/1009+1/7.1/3/1/1009 .23.7.1009+1/30.1009-160

suy ra A=7.1009+23.1009-23.7/7.1009+23.1009-23.7+1+1/7.1009+23.1009-23.7+1=7/1009+23.1009-23.7+1/7.1009+23.1009-23.7+1=1

x=by+cz;y=ax+cz;z=ax+by

=>x+y+z=2(ax+by+cz)

\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)

\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)

\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)

\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)

\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)

\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

thiếu đề

13 tháng 7 2017

\(C=\left[1+\frac{1}{1\cdot3}\right]\left[1+\frac{1}{2\cdot4}\right]...\left[1+\frac{1}{2014\cdot2016}\right]\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{4060225}{4060224}\)

\(=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{2015\cdot2015}{2014\cdot2016}\)

\(=\frac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2015\cdot2015}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2014\cdot2016}\)

Để ý kĩ thì các thừa số dưới mẫu so với trên tử giống nhau chỉ khác 2016 nên C bằng:

C = 2*2*3*3*4*4*...*2015*2015/1*2*3*3*4*4*5*5*...*2015*2015*2016 = 1/2016

13 tháng 7 2017

Ta có : (a-1)(a+1)=a2+a-a-1=a2-1

      \(\Rightarrow\)(a-1)(a+1)+1=a2

Từ đó ta có :

\(C=\frac{2^2}{1.3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{2015^2}{2014\cdot2016}\)

\(\Rightarrow\)\(C=\left(\frac{2\cdot3\cdot4\cdot...\cdot2015}{1\cdot2\cdot3\cdot...\cdot2014}\right)\cdot\left(\frac{2\cdot3\cdot4\cdot...2015}{3\cdot4\cdot5\cdot...\cdot2016}\right)\)

\(\Rightarrow\)\(C=\frac{2015}{1}\cdot\frac{1}{2016}\)

\(\Rightarrow\)\(C=\frac{2015}{2016}\)