Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)
b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)
\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)
\(=66+44+33+22+12=177\)
c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)
= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)
= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)
= còn lại làm nốt nha! bận ròy
Bài làm:
Ta có:
\(B=-66\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
\(B=\left(-66\right).\frac{1}{2}+66.\frac{1}{3}-66.\frac{1}{11}-124.\left(37+63\right)\)
\(B=-33+22-6-124.100\)
\(B=17-12400\)
\(B=-12383\)
\(B=-66.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
\(=-66.\frac{1}{2}-\left(-66\right).\frac{1}{3}+\left(-66\right).\frac{1}{11}+\left(-124\right).37+63.\left(-124\right)\)
\(=-33+22-6+\left(-124\right).\left(37+63\right)\)
\(=-11-6+\left(-124\right).100\)
\(=-17-12400\)
\(=-12417\)
a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2
Bài 35 :
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}.\left(13+65\right)}{2^8.104}\)
\(A=\frac{2^8.2^2.98}{2^8.104}\)
\(A=\frac{2^8.4.98}{2^8.4.26}\)
\(A=\frac{49}{13}\)
Vậy \(A=\frac{49}{13}\)
\(B=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(B=\frac{11.3^{29}-9^{15}}{2^2.\left(3^{14}\right)^2}\)
\(B=\frac{11.3^{29}-9^{15}}{2^2.3^{28}}\)
\(B=\frac{11.3^{29}-\left(3^2\right)^{15}}{4.3^{28}}\)
\(B=\frac{11.3^{29}-3^{30}}{4.3^{28}}\)
\(B=\frac{11.3^{29}-3^{29}.3}{4.3^{28}}\)
\(B=\frac{3^{29}.\left(11-3\right)}{4.3^{28}}\)
\(B=\frac{3^{29}.8}{4.3^{28}}\)
\(B=\frac{3^{28}.3.4.2}{4.3^{28}}\)
\(B=3.2\)
\(B=6\)
Vậy B = 6
A = 2^10 . 13 + 2^10 . 65 / 2^8 . 104
= 2^10 ( 13 + 65 ) / 2^8 . 104 = 2^10 . 78 / 2^8 . 104 = 2^8 . 2^2 . 78 / 2^8 . 104 = 2^8 . 4 . 78 / 2^8 . 104 = 2^8 . 312 / 2^8 . 104
= 312/104
= 3
B = 11 . 3^22 . 3^7 - 9^15 / ( 2.3^14)^2
= 11 . 3^29 - (3^2)^15 / ( 3.2^14)^2
= 11 . 3^29 - 3^30 / ( 3. 2 )^28
= ( 8 + 3 ) . 3^29 - 3^30 / ( 3. 2)^28
= 8 . 3^29 + 3.3^29 - 3^30 / ( 3.2)^28
= 8 . 3^29 + 3^30 - 3^30 / ( 3 . 2)^28
= 8 . 3^29 / 3^28 . 2^28
= 2^3 . 3 / 2^28
= 3/ 2^25
A= 3^10.( 11+5 ) / 3^9. 2^4
A= 3^10. 16 /3 ^9 . 16
A= 3^10/3^9= 3
B= 2^10. ( 13 +65) / 2^8.104
B= 2^10. 78/ 2^8.104
B= 2 ^10.2.39/ 2^8 .2.52
B= 2^11.39/ 2^9.52
B= 2 ^ 2. (39/ 52)
B= 4 . 39/52 = 3
C= (2^3.3^2)^3.( 2.3.3^2 )^2 / (2^2.3^3)^4
C= 2^9.3^6/ 2^2.3^2.3^4
C= 2^9.3^6/ 2^2.3^6
C= 2^9/2^2= 2^5=32
D= 11.3^29-3^30/ 2^2.3^28
D= 3^29.(1- 3)/ 2^2.3^28
D= 3^29.(-2)/ 2^2.3^28
D= 3. (-2/2^2)
D = 3. (-1/2)= -3/2
\(A=-1-4=-5\)
\(B=\frac{4}{3}.\frac{15}{7}-16\)
\(B=\frac{20}{7}-16\)
\(B=\frac{-92}{7}\)
\(C=\frac{28}{15}.0,25.3+\left(\frac{8}{15}-\frac{1}{4}\right)\div1\frac{23}{24}\)
\(C=1,4+\frac{17}{60}\div\frac{47}{24}\)
\(C=1,4+\frac{34}{235}\)
\(C=\frac{363}{235}\)
\(A=\frac{-15}{8}+\frac{7}{8}-4\)
\(=-1-4=-5\)
\(B=\left(4-2\frac{2}{3}\right).2\frac{1}{7}-1\frac{3}{5}:\frac{1}{10}\)
\(=\frac{4}{3}.\frac{15}{7}-\frac{8}{5}:\frac{1}{10}\)
\(=\frac{20}{7}-16=\frac{-92}{7}\)
\(C=1\frac{13}{15}.\left(0,5\right)^2.3+\left(\frac{8}{15}-25\%\right):1\frac{23}{24}\)
\(=\frac{28}{15}.\frac{1}{4}.3+\frac{17}{60}:\frac{47}{24}\)
\(=\frac{7}{15}.3+\frac{17}{60}:\frac{47}{24}\)
\(=\frac{7}{5}+\frac{34}{235}=\frac{363}{235}\)
Xin lỗi, mình chỉ làm được câu 1 thôi
\(A=\frac{1}{7}\left(\frac{555}{222}+\frac{4444}{12221}+\frac{33333}{244442}+\frac{11}{330}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left(\frac{5.111}{2.111}+\frac{4.1111}{11.1111}+\frac{3.11111}{22.11111}+\frac{11}{11.30}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left(\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left[\left(\frac{5}{2 }+\frac{1}{30}+\frac{13}{60}\right)+\left(\frac{4}{11}+\frac{3}{22}\right)\right]\)
\(A=\frac{1}{7}\left[\left(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}\right)+\left(\frac{8}{22}+\frac{3}{22}\right)\right]\)
\(A=\frac{1}{7}\left(\frac{11}{4}+\frac{1}{2}\right)\)
\(A=\frac{1}{7}.\frac{13}{4}\)
\(A=\frac{13}{21}\)
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
\(A=426+2.\left(37-213\right)+39-13\)
\(A=426+2.\left(-176\right)+39-13\)
\(A=426+\left(-352\right)+39-13\)
\(A=74+39-13\)
\(A=113-13\)
\(A=100\)
\(B=\left(\frac{1}{2}-\frac{3}{11}\right):\frac{1}{22}-10\)
\(B=\frac{5}{22}:\frac{1}{22}-10\)
\(B=5-10\)
\(B=-5\)