Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21 . ( 271 + 29 ) + 79 . ( 271 + 29 )
= ( 271 + 29 ) . ( 21 + 79 )
= 300 . 100
= 30000
a, 30000
b, 3A=32+33 +34+....+3100
3A-A=3100-3
2A=3100-3
A=(3100-3):2
a) \(625^5\)= \(\left(5^4\right)^5\)= \(5^{20}\)
\(125^7\)= \(\left(5^3\right)^7\)= \(5^{21}\)
Vì \(5^{20}\)< \(5^{21}\)
Nên \(625^5\)< \(125^7\)
b) \(5^{36}\)= \(3^{3.12}\)= \(\left(5^3\right)^{12}\)= \(125^{12}\)
\(11^{24}\)= \(11^{2.12}\)= \(\left(11^2\right)^{12}\)= \(121^{12}\)
Vì \(125^{12}\)> \(121^{12}\)
Nên \(5^{36}\)> \(11^{24}\)
c) Ghi ko rõ đề
a) 6255 = (54)5 = 520
1257 = (53)7 = 521
Do: 20 < 21 => 520 < 521 hay 6255 < 1257
b) 536 = (53)12 = 12512
1124 = (112)12 = 12112
Do: 125 > 121 => 12512 > 12112 hay 536 > 1124
c) Mình nghĩ đề bài có chút trục trặc vì nếu đề đúng thì chẳng phải quá rõ ràng là 7 < 216 rồi hay sao. Bạn chịu khó kiểm tra lại đề nhé!
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
Câu 4
Đặt \(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+...+3^{19}.4\)
\(\Rightarrow A=\left(3+3^3+...+3^{19}\right).4⋮4\)
\(\Rightarrow A⋮4\left(đpcm\right)\)
\(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{17}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+...+3^{17}.40\)
\(\Rightarrow A=\left(3+...+3^{17}\right).40⋮40\)
\(\Rightarrow A⋮40\left(đpcm\right)\)
Câu 3:
Giải:
a) \(5⋮x-5\)
\(\Rightarrow x-5\in\left\{1;5\right\}\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=5\Rightarrow x=10\)
Vậy \(x\in\left\{6;10\right\}\)
b) Ta có: \(x+3⋮x-3\)
\(\Rightarrow\left(x-3\right)+6⋮x-3\)
\(\Rightarrow6⋮x-3\)
\(\Rightarrow x-3\in\left\{1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{4;5;6;9\right\}\)
Vậy \(x\in\left\{4;5;6;9\right\}\)
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B