Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
3/2 x 4/3 x 5/4 x ......... x 8/7 x 9/8
Ta loai bo so giong nhau o TS va MS
Ta duoc 9/2
\(1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\times1\frac{1}{6}\times1\frac{1}{7}\times1\frac{1}{8}\)
\(=\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times\frac{9}{8}\)
\(=\frac{9}{3}\)
\(=3\)
= 4/3 x 5/4 x 6/5 x 7/6 x 8/7 x 9/8
= 4x5x6x7x8x9/3x4x5x6x7x8 = 9/3 = 3
k mk nha
3/4 x 8/9 x 15/16 x ... x 99/100 x 120/121 = 3 x 8 x 15 x 99 x 120/ 4 x 9 x 16 x 100 x 121
= ( 1 x 3 ) x ( 2 x 4 ) x ( 3 x 5 ) x ... x ( 9 x 11 ) x ( 10 x 12 ) / ( 2 x 2 ) x ( 3 x 3 ) x ( 4 x 4 ) x ... x ( 10 x 10 ) x ( 11 x 11 )
= ( 1 x 2 x 3 x ... x 10 ) x ( 3 x 4 x 5 x ... x 12 ) / ( 2 x 3 x ... x 11 ) x ( 2 x 3 x ... x 11 ) = 12/11x2 = 6/11
a/
\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x1\frac{1}{6}=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x\frac{6}{5}x\frac{7}{6}=\frac{7}{2}=3\frac{1}{2}\)
b/
x=0; y=5
a) \(\frac{24}{x}=\frac{3}{5}.\frac{8}{3}\)
\(\frac{24}{x}=\frac{8}{5}\)
\(x=\frac{24.5}{8}\)
\(x=15\)
b) \(2.x=24\frac{1}{4}-3\frac{1}{2}\)
\(2.x=\frac{83}{4}\)
\(x=\frac{83}{8}\)
Câu c, d làm tương tự, đơn giản
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
Mình làm hơi lâu! bạn thông cảm
Chúc bạn hok tốt nha!@
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006