Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)
Bài 1 : \(B=1+2+3+...+98+99=\frac{\left(99+1\right).99}{2}=4950\)
Bài 2 : \(C=1+3+5+...+997+999=\frac{\left(999+1\right).499}{2}=249500\)
Bài 3 : \(D=10+12+14+...+996+998=\frac{\left(998+10\right).495}{2}=249480\)
Mấy bài này áp dụng công thức nhé bạn
1 Giải
Số lượng số hạng là:
(99-1):1+1=99(số hạng)
Tổng dãy B là:
(99+1).99:2=4950
Đ/S:4950
Công thức này bạn ko cần chứng minh lại nhé !
\(1+2+3+.....+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng với n = 99 ta có:
\(1+2+3+....+98+99=\frac{98\cdot\left(99+1\right)}{2}=4900\)
Vậy B=4900
Bài 1. B = 1 + 2 + 3 + ... + 98 + 99
Số số hạng : ( 99 - 1 ) : 1 + 1 = 99 số
Tổng : ( 99 + 1 ) . 99 : 2 = 4950
=> B = 4950
Công thức
Tính số số hạng : ( số lớn - số bé ) : khoảng cách + 1
Tính tổng : ( số lớn + số bé ) . số số hạng : 2
=> Tương tự với C và D
Bài 1:
Dãy B có số số hạng là:(99-1):1 +1=99 số số hạng
=> B=\(\frac{\left(99+1\right)\cdot99}{2}=4950\)
Bài 2:
Dãy C có số số hạng là: (999-1):2+1=500 số số hạng
=> \(C=\frac{\left(999+1\right)\cdot500}{2}=250000\)
Bài 3: làm tương tự
B = 1+ 2 + 3 + ... + 98 + 99
số số hạng từ 1 đến 99 là : (99 - 1) : 1 + 1 = 99
=) B = (99+1) . 99 : 2 = 4950
vậy B = 4950
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+..+0
B=0
C=2^100-(2^99+2^98+2^97+...+1)
đặt D=2^99+2^98+2^97+...+1
=>D=2^100-1
=>C=2^100-(2^100-1)=1
Số các số hạng là : ( 99 - 1 ) : 1 +1 = 99 ( số )
Tổng là : ( 99 + 1 ) . 99 : 2 = 4950
Vậy, B = 4950
số số hạng của B là :
( 99 - 1 ) : 1 + 1 = 99 ( số )
tổng B là :
( 99 + 1 ) . 99 : 2 = 4950
Vậy ...