Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3-4}+\frac{1}{4-5}+\frac{1}{5-6}+\frac{1}{6-7}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
A=\(\frac{7}{4}.\frac{44}{7}\)
A=11
Like cho mình nha bài này viết mỏi tay lắm
3333^4 =1111^4 x 3^4 =1111^4 x81
4444^3 =1111^3 x4^3 =1111^3 x64
=> 3333^4 >4444^3
Đáp án D
Ta có 1 2 + 2 2 + 3 2 + ... + n 2 = n n + 1 2 n + 1 6
và 1 + 2 + 3 + ... + n 2 = n n + 1 2
Xét 1 + x 1 + 2 x ... 1 + n x ⇒ Hệ số của x 2 là
a 2 = 1. 2 + 3 + ... + n + 2. 3 + 4 + ... + n + ... + n − 1 n
= 1. 1 + 2 + ... + n − 1 + 2. 1 + 2 + ... + n − 1 + 2 + ... + n − 1 . 1 + 2 + ... + n − 1 + 2 + ... + n − 1
= ∑ k = 1 n k × n n + 1 2 − k k + 1 2
= 1 2 ∑ k = 1 n k × n 2 + n − k 2 + k
= 1 2 ∑ k = 1 n n 2 + n k − k 3 + k 2
= 1 2 = n 2 + n 2 8 − n n + 1 2 n + 1 12
n 2 + n 2 2 − n 2 + n 2 4 − n n + 1 2 n + 1 6
Vậy T = n 2 + n 2 8
→ n − 2017 T = 2017.2018 2 8 = 1 2 2017.2018 2 2
Ta có:
\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)
Dấu "=" xảy ra <=> x - 4 \(\ge0\)
và 2020 - x \(\ge0\)
<=> \(x\ge4\) và \(x\le2020\)
\(\Leftrightarrow4\le x\le2020\)
Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)
A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(\Leftrightarrow A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(\Leftrightarrow A=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(\Leftrightarrow A=\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
\(\Leftrightarrow A=\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(\Leftrightarrow A=\frac{7}{4}.\left[33.\frac{4}{21}\right]\)
\(\Leftrightarrow A=\frac{7}{4}.\frac{44}{7}\)
\(\Leftrightarrow A=11\)
a=11