K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)

27 tháng 8 2018

\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)

\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)

28 tháng 8 2018

\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)

\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)

\(=7.29.133=26999\)

14 tháng 9 2017

Ngay kia minh giup

14 tháng 9 2017

ok dc lun

10 tháng 9 2017

a) a^3+b^3

 =(a+b).(a^2-ab+b^2)

=S.(a^2+2ab+b^2-3ab)

=S.(a+b)^2-3ab

=S.S^2-3P

=S^3-3P

10 tháng 9 2017

c) C=a^2+ab+b^2

=a^2+2ab+b^2-ab

=(a+b)^2-ab

=S^2-P

8 tháng 12 2021
Ta có:a-b=10=> a*2 - 2ab +b*2=100 <=> a*2+b*2=100+2ab=100-2.24=52 => a*2 + b*2 + 2ab = 52-2.24=4 <=> (a+b)*2=4
21 tháng 7 2016

\(A=a^3-b^3-84\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)

\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)

\(=6.\left[6^2+3.9\right]=6.63=379\)

\(Ủng\)hộ nhak

7 tháng 8 2020

A) Ta có a + b = 10

=> (a + b)2 = 102

=> a2 + b2 + 2ab = 100

=> a2 + b2 + 8 = 100

=> a2 + b2 = 92

Vậy A = a2 + b2 = 92

b) Ta có a + b = 10

=> (a + b)3 = 103

=> a3 + b3 + 3a2b + 3ab2 = 1000

=> a3 + b3 + 3ab(a + b) = 1000

=> a3 + b3 + 3.4.10 = 1000

=> a3 + b3 + 120 = 1000

=> a3 + b3 = 880

Vậy B = a3 + b3 = 880

7 tháng 8 2020

Đưa biểu thức về hđt nhé 

a, Ta có : \(\left(a+b\right)^2=10^2\Leftrightarrow a^2+b^2+2ab=100\)

\(\Leftrightarrow a^2+b^2+8=100\Leftrightarrow a^2+b^2=92\)

b, Ta có : \(\left(a+b\right)^3=10^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2=1000\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1000\)

\(\Leftrightarrow a^3+b^3+12.10=1000\Leftrightarrow a^3+b^3=880\)

21 tháng 5 2023

Giả sử \(a\ge b\ge c\)

\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\) 

\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\) 

\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)

\(\ge12\)

ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)

 

21 tháng 5 2023

Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị

25 tháng 9 2020

1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab

                  = 72 - 4.5 = 49 - 20 = 29

2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab

                    = 52 + 4.3 = 25 + 12 = 37