Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
a) a^3+b^3
=(a+b).(a^2-ab+b^2)
=S.(a^2+2ab+b^2-3ab)
=S.(a+b)^2-3ab
=S.S^2-3P
=S^3-3P
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
A) Ta có a + b = 10
=> (a + b)2 = 102
=> a2 + b2 + 2ab = 100
=> a2 + b2 + 8 = 100
=> a2 + b2 = 92
Vậy A = a2 + b2 = 92
b) Ta có a + b = 10
=> (a + b)3 = 103
=> a3 + b3 + 3a2b + 3ab2 = 1000
=> a3 + b3 + 3ab(a + b) = 1000
=> a3 + b3 + 3.4.10 = 1000
=> a3 + b3 + 120 = 1000
=> a3 + b3 = 880
Vậy B = a3 + b3 = 880
Đưa biểu thức về hđt nhé
a, Ta có : \(\left(a+b\right)^2=10^2\Leftrightarrow a^2+b^2+2ab=100\)
\(\Leftrightarrow a^2+b^2+8=100\Leftrightarrow a^2+b^2=92\)
b, Ta có : \(\left(a+b\right)^3=10^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2=1000\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1000\)
\(\Leftrightarrow a^3+b^3+12.10=1000\Leftrightarrow a^3+b^3=880\)
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab
= 72 - 4.5 = 49 - 20 = 29
2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab
= 52 + 4.3 = 25 + 12 = 37
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)