K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

a) 1/1.2 + 1/2.3 + ... + 1/2019.2020

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/2019 - 1/2020

= 1 - 1/2020

= 2019/2020

b) 1/1.4 + 1/4.7 + ... + 1/100.103

= 1/3.(1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)

= 1/3.(1 - 1/103)

= 1/3.102/103

= 34/103

\(a,\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(b,\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)=\frac{1}{3}.\frac{102}{103}=\frac{34}{103}\)

16 tháng 7 2020

thôi mik làm đc rồi

5 tháng 5 2018

khỏi ghi lại đề nha

A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50

A=1-1/50

A=49/50

6 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

22 tháng 7 2020

Bài 15 :

a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}=\frac{2019}{2020}< \frac{2020}{2020}=1\)

b) Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\)

\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)

\(A=\frac{1}{2^{1001}}-\frac{1}{2}\)

Tới đây là so sánh đi nhé

22 tháng 7 2020

Cái này mình làm hôm qua rồi mà '-'

a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A< 1\)

b) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\)

\(2A-A=A\)

\(=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{999}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{1000}}\)

\(=1-\frac{1}{2^{1000}}\)

\(\Rightarrow A=1-\frac{1}{2^{1000}}< 1\left(đpcm\right)\)

5 tháng 5 2019

\(\frac{-7}{11}.\frac{11}{19}+\frac{-7}{11}.\frac{8}{19}+\frac{-4}{11}\)

\(=\frac{-7}{11}.\left(\frac{11}{19}+\frac{8}{19}\right)+\frac{-4}{11}\)

\(=\frac{-7}{11}.1+\frac{-4}{11}\)

\(=\frac{-7}{11}+\frac{-4}{11}=\frac{-11}{11}=-1\)

~ Hok tốt ~

5 tháng 5 2019

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow B=1-\frac{1}{2019}\)

\(\Rightarrow B=\frac{2018}{2019}\)

3 tháng 11 2019

=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000

=1/1-1/2000

=1999/2000<3/4

3 tháng 11 2019

Bài này hình như sai đề, kết quả khi tình ra dc là 1999/2000 làm sao nhỏ hơn 3/4 dc bạn

14 tháng 4 2019

a. \(\frac{1}{1.2}+...+\frac{1}{x.\left(x+1\right)}=99\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+...+\frac{1}{x}-\frac{1}{x+1}=99\)

\(\Rightarrow1-\frac{1}{x+1}=99\)

\(\Rightarrow\frac{1}{x+1}=1-99=-98\)

\(\Rightarrow x=\frac{1}{-98}-1\)

\(\Rightarrow x=-\frac{99}{98}\)

P/s : Bạn ơi đề sai, x sai hay mk sai ạ???

14 tháng 4 2019

A, 1/(1.2)+...+1/[x(x+1)]=99
 =>1-1/2+...+1/x+1/(x-1)=99
 =>1-1/(x-1)=99
 =>1/(x-1)=-98
 =>1/(x-1)=-98/1
 =>1.(-98)=(x-1).1(tích chéo)
 =>x-1=-98
 =>x=-97
   

23 tháng 1 2020

Đợi hơi lâu tí nha !

23 tháng 1 2020

Câu 3 : \(2+4+6+.........+2n=156\)

\(\Leftrightarrow2\left(1+2+3+.....+n\right)=156\)

\(\Leftrightarrow1+2+3+.........+n=78\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=78\)\(\Leftrightarrow n\left(n+1\right)=156=12.13\)\(\Leftrightarrow n=12\)

Vậy \(n=12\)

 1) Tính hợp lí: A = \(\frac{1}{1.15}\)-\(\frac{6}{15.51}\) -  \(\frac{6}{51.19}\) -  \(\frac{6}{19.53}\) - ... -  \(\frac{6}{117.41}\)2) Cuối HK II lớp 6B có 35 h/s gồm 3 loại: Giỏi, Khá, Trung bình. Trong đó, số h/s Giỏi  bằng 40% số h/s cả lớp. số h/s Khá bằng 9/7 số h/s Giỏi. Tính số h/s Trung bình của lớp 6B.3) Một trường học có 1200 h/s, Số h/s trung bình chiếm 5/8 tổng số ; số h/s khá chiếm 1/3 tổng...
Đọc tiếp

 

1) Tính hợp lí: A = \(\frac{1}{1.15}\)-\(\frac{6}{15.51}\) -  \(\frac{6}{51.19}\) -  \(\frac{6}{19.53}\) - ... -  \(\frac{6}{117.41}\)

2) Cuối HK II lớp 6B có 35 h/s gồm 3 loại: Giỏi, Khá, Trung bình. Trong đó, số h/s Giỏi  bằng 40% số h/s cả lớp. số h/s Khá bằng 9/7 số h/s Giỏi. Tính số h/s Trung bình của lớp 6B.

3) Một trường học có 1200 h/s, Số h/s trung bình chiếm 5/8 tổng số ; số h/s khá chiếm 1/3 tổng số, còn lại là h/s giỏi. Tính số h/s giỏi của trường.

4) So sánh với  \(\frac{1}{4}\)    :   A = \(\frac{1}{1.2.3}\) + \(\frac{1}{2.3.4}\) + \(\frac{1}{3.4.5}\)  +...+ \(\frac{1}{2017.2018.2019}\) 

5) Tính hợp lí: B = \(\frac{1935}{1.4}\) + \(\frac{1935}{4.7}\) +  \(\frac{1935}{7.10}\)  + ... +  \(\frac{1935}{40.43}\)

6) Tính B: 1 + 2 + 2^2 + 2^3+...+ 2^2018

                                  1 - 22019

 

 

9

2) hc sinh giỏi lớp 6B là 

35.40%=14(hs)

Số hc sinh khá lớp 6B là 

14.\(\frac{9}{7}\)=17(hs)

Số hc sinh trung bình lớp 6B là 

35-(14+17)=4(hs)

kl...

3)

Số hs trung bình là 

1200.\(\frac{5}{8}\)=750 (hs)

Số hc sinh khá là 

1200.\(\frac{1}{3}\)=400(hs)

Số hc sinh giỏi là 

1200-750-400=50(hs)

kl....