Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{8.11}+\frac{1}{11.14}+..+\frac{1}{605.608}\)
\(3A=\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{605.608}\)
\(3A=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{605}-\frac{1}{608}\)
\(3A=\frac{1}{8}-\frac{1}{608}\)
\(A=\frac{75}{608}:3\)
\(A=\frac{25}{608}\)
Ủng hộ mk nha !!! ^_^
Ta có: \(A=\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{605.608}\)
\(\Rightarrow3A=\frac{3}{8.11}+\frac{3}{11.14}+....+\frac{3}{605.608}\)
\(\Rightarrow3A=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+....+\frac{1}{605}-\frac{1}{608}\)
\(\Rightarrow3A=\frac{1}{8}-\frac{1}{608}=\frac{75}{608}\)
\(\Rightarrow A=\frac{75}{608}:3=\frac{25}{608}\)
Vậy \(A=\frac{25}{608}\)
Ủng hộ cho mik nha bạn?
\(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)
\(\Leftrightarrow x+3=103\)
\(\Leftrightarrow x\)\(=103-3\)
\(\Leftrightarrow x\)\(=100\)
Vậy x = 100
~~~~~~~Hok tốt~~~~~~~~
ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)
\(\Rightarrow x+3=103\)
\(\Rightarrow x=100\)
nhớ k nha
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)
Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)
Vậy \(S=\frac{49}{300}\)
CHÚC BẠN HỌC TỐT
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
Tính
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
Ta có: \(\frac{1}{10.11}+\frac{1}{11.12}+....+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{10}-\frac{1}{50}\)
\(=\frac{2}{25}\)
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)
a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)
b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)
25/608 tick nha cho tròn 60
A = \(\frac{1}{3}\left(\frac{3}{8.11}+\frac{3}{11.14}+.......+\frac{3}{605.608}\right)\)
= \(\frac{1}{3}\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{605}-\frac{1}{608}\right)\)
= \(\frac{1}{3}\left(\frac{1}{8}-\frac{1}{608}\right)=\frac{1}{3}.\frac{76-1}{608}=\frac{1}{3}.\frac{75}{608}=\frac{25}{608}\)