K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

DD
8 tháng 8 2021

a) \(S=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

b) \(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

\(S=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

c) \(S=1.4+2.5+3.6+...+n\left(n+3\right)\)

\(=1.2+1.2+2.3+2.2+3.4+3.2+...+n\left(n+1\right)+2n\)

\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)+2\left(1+2+3+...+n\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+n\left(n+1\right)\)

\(=\frac{n\left(n+1\right)\left(n+5\right)}{3}\)

19 tháng 12 2016

a) \(A=1+2+2^2+...+2^{2016}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)

\(\Rightarrow A=2^{2017}-1\)

Vậy \(A=2^{2017}-1\)

b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Vậy...

 

11 tháng 9 2021

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3A=99.100.101\)

\(\Rightarrow A=\left(99.100.101\right):3\)

\(\Rightarrow A=333300\)

11 tháng 9 2021

\(B=1.3+2.4+3.5+...+99.101\)

\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)

\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)

\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)

\(\Rightarrow B=333300+4950\)

\(\Rightarrow B=338250\)

19 tháng 3 2024

a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\) 

\(\dfrac{-n-a-n}{n.\left(n+a\right)}\)

\(\dfrac{-2n-a}{n.\left(n+a\right)}\)

b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)

\(\dfrac{2007}{2008}\)

c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)

\(\dfrac{96}{97}\)

11 tháng 3 2019

a) Em quy đồng lên là tính ra 

\(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)

b) Tương tự câu a)

\(\frac{1}{n}-\frac{1}{n+3}=\frac{3}{n\left(n+3\right)}\)

c) Áp dụng câu a

\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

=\(1-\frac{1}{2019}=\frac{2018}{2019}\)

d) câu d áp dụng câu b làm tương tự như câu c