Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
b)x^2+y^2=x+y+8
=>4x^2+4y^2-4x-4y=32
=>4x^2-4x+1+4y^2-4y+1=34
=>(2x-1)^2+(2y-1)^2=9+25=25+9
đến đây thì dễ rồi
y^2+2xy-3x-2=0
=>y^2+2xy+x^2=x^2+3x+2
=>(x+y)^2=(x+2)(x+1)
đến đây thì bn tự lm nha
a) 5x-15y=5x-3.5.y=5(x-3y)
c) 14xy(xy+28x)
d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)
e) (x-1)3
f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)
g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))
h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
2a)
(x+1)(x2+2x)=0
(x+1)x(x+2)=0
\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)
\(\left|x+5\right|+\left(3y-4\right)^{2010}=0\)
Vì \(\left|x+5\right|\ge0\forall x\)
Vì \(\left(3y-4\right)^{2010}\ge0\forall y\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+5\right|=0\\\left(3y-4\right)^{2010}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)