Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2+x-18 chia hết cho x-3
2x2-6x+6x+x-18
2x(x-3)+6(x-3)+x chia hết cho x-3
(2x+6)(x-3)+(x-3)+3 chia hết cho x-3
=>3 chia hết cho x-3 hay x-3EƯ(3)={1;-1;3;-3}
=>xE{4;2;6;0}
mk k biết biến đổi lp 8 thế này đã được chưa
\(x^3+x^2+a=\left(x+2\right)\left(x^2-x-2\right)+\left(a+4\right)\)
Để x3+x2+a chia hết x +2 thì
a+4 = 0
=> a=-4
Đặt \(A=x^3+y^3+z^3+axyz\)
Gọi \(Q\) và \(r\) lần lượt là thương và dư của phép chia \(A=x^3+y^3+z^3+axyz\) cho \(\left(x+y+z\right)\)
Thực hiện phép chia \(A=x^3+y^3+z^3+axyz\) \(:\) \(\left(x+y+z\right)\), ta được:
\(Q=x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\) và \(r=-yz\left(x+z\right)\left(a+3\right)\)
Khi đó, \(A=x^3+y^3+z^3+axyz=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\right]+\left[-yz\left(x+z\right)\left(a+3\right)\right]\)
Muốn \(A\) chia hết cho \(x+y+z\) thì đa thức dư phải đồng nhất bằng \(0\), tức \(r=0\)
Hay \(-yz\left(x+z\right)\left(a+3\right)=0\) (với mọi \(x,\) \(y,\) \(z\in Q\) )
Do đó, \(a+3=0\) \(\Rightarrow\) \(a=-3\)
Vậy, hằng số \(a\) cần tìm là \(-3\)
\(C=4x^2+10y-4x+10y-2\)
\(=\left(4x^2-4x+1\right)+\left(10y^2+10y+\frac{5}{2}\right)-\frac{11}{2}\)
\(=\left(2x-1\right)^2+\left(\sqrt{10y}+\sqrt{\frac{5}{2}}\right)^2-\frac{11}{2}\ge\frac{-11}{2}\)
Vậy \(C_{min}=-\frac{11}{2}\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
và \(\sqrt{10}y+\sqrt{\frac{5}{2}}=0\Leftrightarrow y\frac{-\sqrt{5}}{\sqrt{20}}=-0,5\)
Với mỗi số tự nhiên m và n ta có: \(x^n:x^m\) khi và chỉ khi \(n\ge m\).
a) \(x^4:x^n\) nên \(n\le4\). Do n là số tự nhiên nên \(n=0,1,2,3,4\).
b) { \(n\in N\)| \(n\ge3\)}.
c) { \(n\in N\)| \(n\ge2\)}.
d) \(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\)\(\Leftrightarrow n\ge4\).
=>x^3+2x^2+2x^2+4x-5x-10+7 chia hết cho x+2
=>\(x+2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{-1;-3;5;-9\right\}\)