K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Đặt  \(A=x^3+y^3+z^3+axyz\)

Gọi  \(Q\)  và  \(r\) lần lượt là thương và dư của phép chia   \(A=x^3+y^3+z^3+axyz\)  cho   \(\left(x+y+z\right)\)

Thực hiện phép chia   \(A=x^3+y^3+z^3+axyz\)   \(:\)   \(\left(x+y+z\right)\), ta được:

\(Q=x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\)   và   \(r=-yz\left(x+z\right)\left(a+3\right)\)

Khi đó,  \(A=x^3+y^3+z^3+axyz=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\right]+\left[-yz\left(x+z\right)\left(a+3\right)\right]\)

Muốn  \(A\)  chia hết cho  \(x+y+z\)  thì đa thức dư phải đồng nhất bằng  \(0\), tức  \(r=0\)

Hay  \(-yz\left(x+z\right)\left(a+3\right)=0\)  (với mọi  \(x,\)  \(y,\)  \(z\in Q\) )

Do đó,  \(a+3=0\)  \(\Rightarrow\)  \(a=-3\)

Vậy, hằng số  \(a\)  cần tìm là  \(-3\)

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

NV
22 tháng 10 2021

\(x^3+x\ge2\sqrt{x^4}=2x^2\)

Tương tự:

\(y^3+y\ge2y^2\)

\(z^3+z\ge2z^2\)

Cộng vế:

\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

22 tháng 10 2021

giup e (e cam on)

https://hoc24.vn/cau-hoi/cho-ham-so-yfleftxright-x24x5tim-m-defleftleftxrightright-leftm1rightleftfleftxrightrightm0-co-8-nghiem-phan-biet.2499562346765

 

9 tháng 6 2017

Bài 1:

Ta có:\(x^2+xy+y^2+1\)

\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)

\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)

\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)

Hay \(x^2+xy+y^2+1>0\) (đpcm)

Chúc bạn học tốt!!!

9 tháng 6 2017

hả ko phải lớp trưởng hay sao mà hcus