K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

áp dụng t/c của dãy thỉ số bằng nhau, ta có

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

=>12x-15y=0 <=> 12x=15y <=> \(\frac{x}{15}=\frac{y}{12}\Rightarrow\frac{x}{60}=\frac{y}{48}\) (1)

20z-12x=0 <=> 20z=12x <=> \(\frac{x}{20}=\frac{z}{12}\Rightarrow\frac{x}{60}=\frac{z}{36}\) (2)

từ (1) và (2) => \(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}\)

áp dụng tc của dãy tỉ số bằng nhau, ta có

\(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}=\frac{x+y+z}{60+48+36}=\frac{48}{144}=13\)

=> x=60:3=20

y=48:3=16

z=36:3=12

vậy ......

21 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

\(\Rightarrow\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}4x=5y\\3y=4z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{5}=\frac{y}{4}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Rightarrow}\frac{x}{5}=\frac{y}{4}=\frac{z}{3}}\)

Áp dụng tinh chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)

\(\Rightarrow\hept{\begin{cases}x=20\\y=16\\z=12\end{cases}}\)

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

13 tháng 2 2020

b) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)

\(\Rightarrow x=12k,y=9k,z=5k\)

\(xyz=20\)

\(\Rightarrow12k.9k.5k=20\)

\(\Rightarrow540k^3=20\)

\(\Rightarrow k^3=\frac{1}{27}\)

\(\Rightarrow k=\frac{1}{3}\)

Khi   \(k=\frac{1}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=4\)

\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=3\)

\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{5}{3}\)

Vậy x = ..... ; y = ............ ; z = .............

10 tháng 8 2019

a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)

8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

=> x = 24,y = 15,z = 6

b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)

=> x = -165 , y = -20 , z = -25

c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k

=> xyz = 12k . 9k . 5k

=> xyz = 540k3

=> 540k3 =20

=> k3 = 20/540

=> k3 = 1/27

=> k = 1/3

Do đó : x= 4 , y = 3 , z = 5/3

20 tháng 11 2018

QUI đồng lên rồi tính

20 tháng 11 2018

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)

\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Xét: 

\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)

Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)

\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)

Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)

Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)

3 tháng 10 2019

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)  => 

7 tháng 4 2017

Theo đề ta có

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{\left(12x-15y\right)+\left(20z-12x\right)+\left(15y-20z\right)}{7+9+11}\)

\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

=>12x=15y          =>12x=15y=20z

    20z=12x

=>\(\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)

=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)

=>x=4.5=20

y=4.4=16

z=4.3=12

18 tháng 1 2019

                           Giải

Áp dụng tính chất của dãy các tỉ số bằng nhau ta có :

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15x+20z-12x+15y-20z}{7+9+11}\)\(=\frac{0}{27}=0\)

\(\Rightarrow12x=15y=20z\)

\(\Rightarrow\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Lại áp dụng tính chất của dãy các tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{48}{5+4+3}=\frac{48}{12}=4\)

\(\Rightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\\z=3.4=12\end{cases}}\)

16 tháng 8 2016

Áp dụng tc dãy tỉ

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Xét \(\frac{12x-15y}{7}=0\Rightarrow12x-15y=0\Rightarrow12x=15y\Rightarrow\frac{x}{15}=\frac{y}{12}\)

Xét \(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)

Ta có:\(\frac{x}{15}=\frac{y}{12}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)

\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}\).Tiếp tục áp dụng tc dãy tỉ 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

  • Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\cdot75\Rightarrow15x=300\Rightarrow x=20\)
  • Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\cdot60\Rightarrow15y=240\Rightarrow y=16\)
  • Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\cdot45\Rightarrow15z=180\Rightarrow z=12\)

 

 

 

16 tháng 8 2016

hơi khó đọc chút ráng dịch nha

có 12x-15y phần 7= 20z -12x phần 9 = 15y-20z phần 11 =12x-15y+ 20z-12x+15y-20z  phần 7+9+11 = 0 phần 27 =0

=> 12x- 15y phần 7=0 =>12x-15y=0 => 12x=15y=>4x=5y => x phần 5 = y phần 4

      20z -12x phần 9 = 0 => 20z-12x=0 =>20z = 12x =>5z=3x => z phần 3=x phần5

       15y-20z phần 11=0=> 15y-20z=0=>15y=20z=>3y=4z=> y phần 4=z phần 3

do đó x/5=y/4=z/3 và x+y+ z= 48

áp dụng t/c dãy tỉ số = nhau ta có 

x/5=y/4=z/3= x+y+z/ 5+4+3=48/12=4

=> x/5=4=> x= 20

    y/4=4=> y= 16

     z/3=4=> z=12

vậy x=20; y=16;z=12

5 tháng 11 2016

Áp dụng dãy tỉ số bằng nhau 

\(\frac{12x-15y+20z-12x+15y-20z}{27}=0\) 

rút gọn mới được bằng 0 nha

\(\Rightarrow\frac{12x-15y}{7}=0\Leftrightarrow12x-15y=0\Leftrightarrow12x=15y\Rightarrow\frac{x}{12}=\frac{y}{15}\left(1\right)\)

\(\Rightarrow\frac{15y-20z}{11}=0\Leftrightarrow15y=20z\Rightarrow\frac{y}{15}=\frac{z}{20}\left(2\right)\)

Từ 1 và 2 ta được 

\(\frac{x}{12}=\frac{y}{15}=\frac{z}{20}\)

Rồi đến đây tự làm nha mỏi tay lắm x+y+z=48 dưới mấu số cũng rứa rồi ngủ đây