Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
1, x\(^2\) - 5x = 0
\(\Rightarrow\)x(x-5) = 0
Th1: x = 0
Th2: x- 5 =0
x = 5
2, \(|x-9|\) .( -8) = - 16
\(|x-9|\) = (- 16). ( -8) = 128
Th1: x - 9 = 128
x = 128 + 9 = 137
Th2: x - 9 = - 128
x = -128 + 9 = - 119
3, Th1: 4- 5x = 24
5x = 4- 24 = -20
x = - 20 :5 = -4
Th2: 4- 5x = -24
5x = 4- (-24) = 28
x = 28 :5= 5,6
Vì x < hoặc = 0 \(\Rightarrow\) x = -4
4, x.( x - 2) > 0
\(\Rightarrow\) x và ( x- 2) cùng dấu
Th1: x và (x -2) cùng dương
+ \(\Rightarrow\) x > 0
+ (x - 2) > 0 \(\Rightarrow\) x > 2
Th2: x và ( x- 2) cùng âm
+ \(\Rightarrow\) x < 0
+ ( x - 2) < 0 \(\Rightarrow\) x < 2
Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2
5, x.( x - 2) < 0
\(\Rightarrow\) x và ( x- 2) khác dấu
Th1: x âm và ( x- 2) dương
+ \(\Rightarrow\) x < 0
+ (x -2 ) > 0 \(\Rightarrow\) x > 2
Th2: x dương và ( x- 2 ) âm
+ \(\Rightarrow\) x >0
+ (x - 2) < 0 \(\Rightarrow\) x < 2
a,\(\frac{-\chi}{4}=\frac{-9}{\chi}\Rightarrow-\chi.\chi=4.\left(-9\right)\)
\(\Rightarrow-2\chi=-36\Rightarrow\chi=-36:\left(-2\right)\)
\(\Rightarrow\chi=18\)
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)