Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)
a)Vì \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\Rightarrow\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}=\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=2\Rightarrow x=8\\\dfrac{3y}{9}=2\Rightarrow y=6\\\dfrac{4z}{36}=2\Rightarrow z=18\end{matrix}\right.\)
b) Câu này không chứa z
c) Vì \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20};\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{-x+y+z}{-7+20+32}=\dfrac{-120}{45}=\dfrac{24}{9}\)
Mik xin loi, de dung la
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{y}=\dfrac{z}{8}\)va \(3x-2y-z=13\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a)
ta có \(\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{13}.\dfrac{1}{14}=\dfrac{3}{7}.9.\dfrac{1}{2}.\dfrac{1}{13}-\dfrac{1}{13}.\dfrac{1}{14}\)\(=\dfrac{1}{13}.\left(\dfrac{3}{7}.\dfrac{9}{2}-\dfrac{1}{14}\right)=\dfrac{1}{13}.\dfrac{26}{14}=\dfrac{1.26}{13.14}\)\(=\dfrac{1.13.2}{13.7.2}=\dfrac{1}{7}\)
b)\(x-\left(\dfrac{5}{2}+2x\right)=x-\dfrac{5}{2}-2x=-x-\dfrac{5}{2}=\dfrac{7}{4}\)
\(\Rightarrow-x=\dfrac{7}{4}+\dfrac{5}{2}=\dfrac{17}{4}\)
\(\Rightarrow x=-\dfrac{17}{4}\)(vì -x là số đối của x)
Theo đề ta có:\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\Rightarrow\dfrac{x^2}{64}=\dfrac{y^2}{144}=\dfrac{z^2}{225}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x^2}{64}=\dfrac{y^2}{144}=\dfrac{z^2}{225}=\dfrac{x^2-y^2}{64-144}=\dfrac{-16}{-80}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{5}\cdot64=\dfrac{64}{5}\\y^2=\dfrac{1}{5}\cdot144=\dfrac{144}{5}\\z^2=\dfrac{1}{5}\cdot225=45\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{\dfrac{64}{5}};x=-\sqrt{\dfrac{64}{5}}\\y=\sqrt{\dfrac{144}{5}};y=-\sqrt{\dfrac{144}{5}}\\z=\sqrt{45};z=-\sqrt{45}\end{matrix}\right.\)
Vậy............................
c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
⇔\(\left(x+4\right)\left(x+4\right)=100\)
⇔\(\left(x+4\right)^2=10^2\)
⇔\(\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
\(c,ĐK:x\ne-4\\ PT\Leftrightarrow\left(x+4\right)^2=100\\ \Leftrightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=-14\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ne-2;x\ne-3\\ PT\Leftrightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow x^2+2x-3=x^2-4\\ \Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
a) \(\dfrac{x}{7}=\dfrac{y}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
⇒\(\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)