K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

a, 2017-|x-2017| = x

=> |x - 2017| = 2017 - x

Th1: x \(\ge\)2017

=> x - 2017 = 2017 - x

=> x + x = 2017 + 2017

=> x = 2017 (thỏa mãn)

Th2: x < 2017

=> x - 2017 = -2017 + x

=> x - x = -2017 + 2017

=> 0 = 0 

Vậy x = 2017

b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)

\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)

Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)

Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)

5 tháng 6 2018

đcm tkg ngu

21 tháng 11 2017

a) 2017-|x-2017|=x

\(\Rightarrow\) 2017-x=|x-2017|

\(\Rightarrow\)2017-x=2017-x

\(\Rightarrow x\in\left\{2017;-2017\right\}\)

Mình chỉ làm được câu a, câu b bạn tự làm nha

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

30 tháng 12 2015

a)(2x-5)^2006>/0( mọi x)

(y^2-1)^2008>/0(mọi x)

(x-z)^2010>/0(mọi x)

Để (2x-5)^2006+(y^2-1)^2008+(x-z)^2010=0

=>2x-5=y^2-1=x-z=0

=>x=2,5;y=1;z=2,5

30 tháng 12 2015

cảm ơn 

 

16 tháng 10 2019

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc bạn học tốt!

16 tháng 10 2019

giúp mình với