Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(x+z=2y\text{ }\Rightarrow\text{ }2\left(x+z\right)=4y\)
\(\Rightarrow\text{ }x=2y-z\text{ }\)
\(\frac{2x-y}{5}=\frac{3y-2z}{15}=\frac{2x-y-3y+2z}{5-15}=\frac{\left(2x+2z\right)-4y}{-10}=\frac{2\left(x+z\right)-4y}{-10}=\frac{4y-4y}{-10}=0\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
=>> Bạn làm tiếp nha !
Ta có :
\(\frac{2x-y}{5}=\frac{3y-2z}{15}=\frac{2x-y-3y+2z}{5-15}=\frac{2x+2z-4y}{-10}=\frac{2\left(x+z\right)-4y}{-10}=\frac{2.2y-4y}{-10}=\frac{4y-4y}{-10}=0\)=> \(\hept{\begin{cases}y=2x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=y\\\frac{y}{2}=\frac{z}{3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{y}{2}=\frac{z}{3}\end{cases}\Rightarrow}\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{x}{4}=\frac{z}{3}=\frac{2y}{4}=\frac{x+z-2y}{4+3-4}=\frac{0}{3}=0}\)
=> x = y = z = 0
Từ x+y = 2y ta có :
x - 2y + z = 0 hay 2x - 4y + 2z = 0 hay 2x - y - 3y + 2z = 0 hay 2x - y = 3y - 2z
Vậy nếu \(\frac{2x-y}{5}=\frac{3y-2z}{15}\)thì: 2x - y = 3y - 2z = 0 ( do 5 khác 15).
Từ 2x - y = 0 suy ra : x = 1/2y
Từ 3y - 2z = 0 và x + z = 2y suy ra : x + y + z - 2z = 0 hay 1/2 y + y - z =0
hay 3/2 y - z = 0 hay y = 2/3 z.Suy ra: x = 1/3 z.
Vậy các số cần tìm là : { x = 1/3 z, y=2/3 z với z thuộc R} hoặc {x=1/2 y, y thuộc R, z = 3/2 y} hoặc {x thuộc R, y=2x, z=3x}
Bn vào câu hỏi tương tự nhé!Nếu ko có thì bn lên mạng nha!!!!!!
K mk nhé!
thanks!
haha!!!
Bn vào câu hỏi tương tự nhé!Nếu ko có thì bn lên mạng nha!!!!!!
K mk nhé!
thanks!
haha!!!
Ta có:
\(\frac{2x-y}{5}=\frac{3y-2z}{15}\)
=>\(\frac{6x-3y}{15}=\frac{3y-2z}{15}\)
\(ADTCDTSBN\), ta có:
\(\frac{6x-3y}{15}=\frac{3y-2z}{15}=\frac{\left(6x-3y\right)+\left(3y-2z\right)}{15-15}=\frac{6x-2z}{0}=0\)
=>\(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\) Vậy \(x=y=z=0\)
a) 5y = 72
=> y = 72/5
2x = 3y
<=> 2x = 3 . 72/5
<=> 2x = 216 / 5
<=> x =108/5
3x - 7y + 5z = -30
<=> 3 . 108/5 - 7. 72/5 + 5z = - 30
<=> 324/5 - 504/5 +5z = -30
<=> 5z = 6
<=> x = 6/5
câu a đoạn cuối z = 6/5 nha
b) x : y : z = 5 : 3 :4
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
=> x =-605/ 7
=> y = -363 / 7
=> z = -484 / 7
a) \(\frac{x}{10}\)= \(\frac{y}{6}\)= \(\frac{z}{21}\) và 5x + y - 2z =28
\(\Rightarrow\)\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\) và 5x + y - 2z=28
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(\frac{28}{14}\)=2
Suy ra: \(\frac{x}{10}\)= \(2\)\(\Rightarrow\)x=20
\(\frac{y}{6}\)= 2\(\Rightarrow\)y=12
\(\frac{z}{21}\)= 2\(\Rightarrow\)z=42
Vậy...
Hai câu b,c làm tương tự nhé
d) \(\frac{3}{x}\)= \(\frac{2}{y}\); \(\frac{7}{y}\)= \(\frac{5}{z}\) và x-y+z=32
\(\frac{y}{3}\)= \(\frac{x}{2}\); \(\frac{z}{7}\)= \(\frac{y}{5}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\); \(\frac{z}{21}\)= \(\frac{y}{15}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\)= \(\frac{z}{21}\) và x-y+z=32
........