Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2y^4-16xy^3+64y^2\right)+\left(4y^2-4xy+x^2\right)=0\)
\(\Leftrightarrow\left(xy^2-8y\right)^2+\left(2y-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\2y-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\x=2y\end{matrix}\right.\)
\(\Rightarrow2y.y^2-8y=0\)
\(\Leftrightarrow2y\left(y^2-4\right)=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=0\\y=2\Rightarrow x=4\\y=-2\Rightarrow x=-4\end{matrix}\right.\)
1/ Điều kiện: x>=2009.
Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)
=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)
Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)
GTNN của y là: y=2008
Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010
2/ Ta có: x+y=6 => y=6-x. Đặt A=x2y
=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]
Do x>0 và (x-3)2 >=0 => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3
=> GTLN của A=x2y là 3.9=27 Đạt được khi x=y=3
1)Đặt \(\sqrt{x-2014}=t\left(t\ge0;x\ge2014\right)\Rightarrow x=t^2+2014\)
Ta có y = \(t^2+2014-2t=\left(t-1\right)^2+2013\ge2013\)
Vậy miny = 2013 khi t = 1 <=> x = 2015
2) CM BĐT : \(abc\le\frac{\left(a+b+c\right)^3}{27}\). ( với a ; b ;c >0 ) (1)
Áp dụng bđt cô si với ba số không âm ta có :
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow\left(a+b+c\right)^3\ge27abc\Leftrightarrow abc\le\frac{\left(a+b+c\right)^3}{27}\)
Dấu '' = '' xảy ra khi a = b= c . BĐT đc chứng minh
Áp dụng BĐT (1) ta có :
\(x^2y=4\cdot\frac{1}{2}x\cdot\frac{1}{2}x\cdot y\le4\cdot\frac{\left(\frac{1}{2}x+\frac{1}{2}x+y\right)^3}{27}=4\cdot\frac{6^3}{27}=32\)
VẬy GTLN của x^2y là 32 khi \(\frac{1}{2}x=y\) và x + y = 6 <=> x = 4 và y = 2
Đk:\(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy....
\(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)
\(\Leftrightarrow\left(xy+10\right)^2=9\left(x+2y\right)^2+13\left(x+2y\right)+1\)
Khi đó ta dễ thấy:
\(\left(3x+6y\right)^2< \left(xy+10\right)^2< \left(3x+6y+2\right)^2\)
\(\Rightarrow\left(xy+10\right)^2=\left(3x+6y+1\right)^2\)
Đến đây thì quá dễ rồi nhá, bạn tự làm nốt