Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)
\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)
Với z=3/4 => x, y
Với z=-3/4 => x,y
Câu b làm tương tự nhé :)
Ta có :
\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)
\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)
* Nếu \(xyz=\frac{3}{15}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)
Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)
Chúc bạn học tốt ~
Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn
\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)
\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)
\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)
Vậy ...
Chúc bạn học tốt ~
(a+b+c)^2=1= a^2+b^2+c^2+2(ab+bc+ac)=1
=> ab+bc+ac=0 (1)
x/a=y/b=z/c =>x=y.a/b , z=y.c/b (2)
Đặt A = x.y+y.z+z. thay x và z của (2) vào ta có
A =(y.a/b).y + y.(y.c/b) +(y.a/b).(y.c/b)
=y^2 (a/b+c/b +ac/b^2)
=y^2(ab+bc+ac)/b^2
Kết hợp (1) ta có A=0 đpcm
Ta có: a + b + c = 1
=>\(\left(a+b+c\right)^2=1\)
=>\(a^2+b^2+c^2+ab+bc+ca=1\)
=> ab + bc + ca = 0(Do a^2 + b^2 + c^2 = 1)
Ta có
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(Do a + b + c = 1)
\(\Rightarrow\hept{\begin{cases}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{cases}}\)
Đặt x + y + z = k
=> \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\Rightarrow\hept{\begin{cases}xy=abk^2\\yz=bck^2\\xz=ack^2\end{cases}}\Rightarrow xy+yz+xz=k^2\left(ab+bc+ca\right)\)
mà ab + bc + ca = 0
=>xy + yz + xz = k^2.0 = 0(ĐPCM)
a) Cộng cả 3 đẳng thức trên ta có:
2(x + y + z) = 1/2 +1/3 + 1/4 = 13/12 => x + y + z = 13/24 (*)
z = 13/24 - 1/2 = 1/24
x = 13/24 - 1/3 = 5/24
y = 13/24 - 1/4 = 7/24.
b) Nhân cả 3 đẳng thức ta có: x2y2z2 = 1/16 => xyz = 1/4 hoặc -1/4