Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x-2}.3^{y-3}.5^{z-1}=144=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(\hept{\begin{cases}2^{x-2}=2^4\\3^{y-3}=3^2\\5^{z-1}=5^0\end{cases}}=>\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}}=>\hept{\begin{cases}x=4+2\\y=2+3\\z=0+1\end{cases}}=>\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
vậy \(\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
Tách số 144 ra ta có :
\(144=2^4.3^2.1=2^4.3^2.5^0\)
Theo đề bài
\(\Rightarrow\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
a) 2y+1.3x=12y=3y.22y
<=> 2y+1.3x=3y.22y <=> 3x-y=22y-y-1 <=> 3x-y=2y-1
Nếu x-y và y-1 khác 0 thì 2 vế 1 số là lẻ, 1 số là chẵn => ko có giá trị nào.
=> x-y=y-1=0 => x=y=1
Ta có: \(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)
\(x+y+z=\frac{13}{12}:2=\frac{13}{24}\)
\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)
\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)
\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)
Vậy x = ....; y = .....; z = .......
k cho mik nha
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}=\frac{x+y+z}{2+3+10}=\frac{45}{15}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\times2\\y=3\times3\\z=3\times10\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=30\end{cases}}\)
k mk nha !
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}\)và x + y + z =45
Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}=\frac{x+y+z}{2+3+10}=\frac{45}{15}=3\)
\(\Rightarrow x=3.2=6\)
\(y=3.3=9\)
\(z=3.10=30\)
Ta có
\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)
Ap dụng tính chất DTSBN
\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)
Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}\) và \(x+y+z=45\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}=\frac{x+y+z}{2+3+10}=\frac{45}{15}=3\)
\(\Rightarrow\begin{cases}\frac{x}{2}=3\Rightarrow x=3.2=6\\\frac{y}{3}=3\Rightarrow y=3.3=9\\\frac{z}{10}=3\Rightarrow z=3.10=30\end{cases}\)
Vậy \(x=6;y=9;z=30\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{10}=\)\(\frac{x+y+z}{2+3+10}=\frac{45}{15}=3\)
=>\(\frac{x}{2}=3=>x=6\)
=>\(\frac{y}{3}=3=>y=9\)
=>\(\frac{z}{10}=3=>z=30\)
vậy:\(x=6;y=9;z=30\)
3x+2.5y=9x.5x
3x+2.5y=32x.5x
x=y=2