Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2y\ge xy+4\ge2\sqrt{4xy}=4\sqrt{xy}\)
\(\Rightarrow y^2\ge4xy\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{xy}{x^2+2y^2}=\dfrac{1}{\dfrac{x}{y}+\dfrac{2y}{x}}=\dfrac{1}{\dfrac{1}{16}\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{31}{16}.\dfrac{y}{x}}\)
\(\Rightarrow P\le\dfrac{1}{\dfrac{1}{16}.2\sqrt{\dfrac{16xy}{xy}}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải